Contextualized Machine Learning for Applied Data Science

Feb 1, 2023 Accelerating Physics with ML

Ben Lengerich, <u>blengeri@mit.edu</u>
Manolis Kellis, <u>manoli@mit.edu</u>
Computational Biology Lab, CSAIL, MIT

Challenges with Real-World Data

- Time-varying effects
 - Noise models change
- Distribution shifts (instrument / upstream model changes)
- Outliers / non-Gaussian glitches
- Model retraining online?
- Interpretability What are we really learning?

Observational data don't always match our expectations

Creatinine (mg/dL)

Observational data don't always match our expectations

Observational data don't always match our expectations

One Solution: Locally-Interpretable Models

- Local models can be both interpretable and accurate
- Universal approximators

Local models: 3 Philosophies

1 Local models are incorrect, obscured by context factors

Tiger or Dog?

Solution: Subtract influence of unseen context factors to estimate universal effects

2 Local models are context-specific views of a universal phenomena

Elephant

Solution: Context-specific models

—> reconstruct global model

Solution: Context-specific models

—> context-specific effects

Contextualized
Heterogeneous Modeling Toolbox

Computer Science and
Artificial Intelligence Lab

Our Solution: Contextualized Machine Learning

Contextualized Machine Learning

Cohort Modeling

statistics of discrete partitions

Contextualized Modeling

parameters as functions of context

Contextualized Machine Learning

Contextualized Machine Learning

Toy Example: Heterogeneous Treatment Effects

Toy Example: Heterogeneous Treatment Effects

- unobserved patients
- observed patients
 - patients of interest

Population Model: No Heterogeneity

Learn a single (population) model by solving $Y = X \hat{\beta} + \hat{\mu}$

- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
 - predicted effects (patients of interest)

Cluster-Based Models: Limited Heterogeneity

Cluster C, then for each cluster solve $Y_c = X_c \hat{\beta}_c + \hat{\mu}_c$

- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
- predicted effects (patients of interest)

Implicit Models: Unorganized

$$Y = \Phi(C, X) \rightarrow \hat{\beta} = \frac{\partial \Phi}{\partial X}$$

- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
- predicted effects (patients of interest)

Contextualized Models: Generalizability by Learning Latent Structure

$$Y = X \beta_{\Phi}(C, \epsilon) + \mu_{\Phi}(C, \epsilon)$$

- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
- predicted effects (patients of interest)

In the worst case, context encoders recapitulate the population model

$$Y = X \beta_{\Phi}(\epsilon) + \mu_{\Phi}(\epsilon) \rightarrow Y = X \hat{\beta} + \hat{\mu}$$

- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
- predicted effects (patients of interest)

Contextualized

Heterogeneous Modeling Toolbox

contextualized.ml

pip install contextualized-ml

from contextualized.easy import ContextualizedRegressor
model = ContextualizedRegressor()
model.fit(C, X, Y)
OPyTorch

How to: Contextualizing Models with Deep Learning

 Define a differentiable objective for your model of interest

$$\hat{\theta} = argmin_{\theta} loss(X, \theta)$$

$$X \in \mathbb{R}^{n \times p}$$

2. Replace model parameters with a differentiable context encoder

$$\widehat{\Phi} = argmin_{\Phi} \sum_{i}^{n} loss(X_{i}, \Phi(C_{i})) \qquad C \in \mathbb{R}^{n \times c}$$

$$[\widehat{\theta}_{1}, \dots, \widehat{\theta}_{n}] = \widehat{\Phi}(C)$$

 (Optional) Re-parameterize the context encoder to reduce the model solution space

$$\Phi(c; \phi, A) := \sum_{k=1}^{K} \phi(c)_k A_k \qquad K \ll |\theta|
A \in \mathbb{R}^{K \times |\theta|}
\hat{\phi}, \hat{A} = argmin_{\phi, A} \sum_{i=1}^{n} loss(X_i, \Phi(C_i; \phi, A)) \qquad \phi(c): \mathbb{R}^c \to \mathbb{R}^K$$

4. Learn with your favorite auto-differentiation library

Contextual Meta-Models Generate Interpretable Local Models

Vignettes of Contextualized Machine Learning

Contextualized Treatment Benefits in Covid-19

Tree-based EBMs are **great** at modeling healthcare data, but not differentiable. Can we combine EBM benefits with contextualized treatment estimation?

Reveals that treatment effectiveness changes based on inflammation and thrombosis factors:

[Lengerich JBI 2022]

Contextualized Gene Regulatory Networks

Learning Sample-Specific Contextualized Graphical Models

Contextualized Gene Regulatory Networks in Cancer

Brain Glioma Embeddings Reveal Network-Based Subtypes

Networks Organize Into Subtypes in Cancer

Key Takeaways

- Contextualized Machine Learning learns meta-models that generate parameters from context.
- All differentiable machine learning models can be expressed as contextualized models.
- Available in PyTorch sklearn-like API:

contextualized.ml

Contextualized Modeling

parameters as functions of context

Thank you!

- Ben Lengerich <u>blengeri@mit.edu</u>
- Manolis Kellis manoli@mit.edu
- Kellis Lab @MIT CSAIL

contextualized.ml

Demos at contextualized.ml/docs

