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Challenges with Real-World Data

Time-varying effects
e Noise models change
Distribution shifts (instrument / upstream model changes)
Outliers / non-Gaussian glitches
Model retraining - online?
Interpretability - What are we really learning?
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Observational data don’t always match our expectations

Expectation

Elevated creatinine levels are
an indicator of renal failure,
SO0 we expect mortality risk to
increase with creatinine.

Mortality Odds Ratio

Creatinine (mg/dL)
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Observational data don’t always match our expectations

2 Expectation . Data-Driven Reality
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Observational data don’t always match our expectations

Elevated creatinine levels are
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One Solution: Locally-Interpretable Models

e Local models can be both

interpretable and accurate / \(W/ Y \

e Universal approximators
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Local models: 3 Philosophies

1 Local models are incorrect, 2 Local models are context-specific
obscured by context factors views of a universal phenomena

Context

Matters

Elephant
Solution: Context-specific models
—> reconstruct global model

3 Local models are accurate views
of context-specific phenomena

Solution: Contéxt-speific models
—> context-specific effects

Solution: Subtract influence of
unseen context factors to
estimate universal effects
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l - Massachusetts Computer Science and
Institute of

Technology CSAILArtificial Intelligence Lab

FZBROAD ;

INSTITUTE



Our Solution:
Contextualized Machine Learning
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Contextualized Machine Learning

Cohort Modeling Contextualized Modeling
statistics of discrete partitions parameters as functions of context
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Contextualized Machine Learning

Latent systems

Context Model
Observations parameters

|
.

{ Observations }
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Contextualized Machine Learning

Latent systems

Context Model
Observations parameters
{ Meta-Model J

{ Observations }
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Toy Example: Heterogeneous Treatment Effects

Latent systems

_ Model:
Context:
. Treatment
Risk Factors .
Benefits

Patient
Response

{ Meta-Model J {Observations:}
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Toy Example: Heterogeneous Treatment Effects

Risk Factors / Context

True Treatment Effects
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Population Model: No Heterogeneity

A
A
Learn a single (population) model by solving Y = Xﬂ + U

Treatment Effects
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Cluster-Based Models: Limited Heterogeneity

Effect of treatment B

N\
Cluster C, then for each cluster solve Y, = X . + /4\0

Treatment Effects
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Implicit Models: Unorganized

Effect of treatment B

Y=®(C, X) - =

Treatment Effects

2_ [ J
oJam'b °
’
V@ e
-1 0 1 2 -1 0 1 2

Effect of treatment A

oD

0X

true effects (unobserved patients)

true effects (observed patients)
predicted effects (unobserved patients)
true effects (patients of interest)
predicted effects (patients of interest)

I I I e m:ts;:tceh:fetts ﬁ/‘g& Computer Science and
I I Technology =y LArt|f|C|aI Intelligence Lab

FZBROAD

INSTITUTE

16



Contextualized Models: Generalizability by Learning Latent Structure

Effect of treatment B

Y= X fo(C, €) + a(C, €)

. Jamie
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Effect of treatment A

true effects (unobserved patients)

true effects (observed patients)
predicted effects (unobserved patients)
true effects (patients of interest)
predicted effects (patients of interest)
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In the worst case, context encoders recapitulate the population model

Y= X fple) + ugp(e) = Y= X,%'l' fi

Treatment Effects
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Contextualized

leterogeneous Modeling Toolbox

contextualized.ml

from contextualized.easy import ContextaulizedRegressor
model = ContextualizedRegressor() . r]
—— B O PyTorC

pip install contextualized-ml
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http://www.contextualized.ml

How to: Contextualizing Models with Deep Learning

1. Define a differentiable objective ‘ 6 = argming loss(X, 0) X € RM %P
for your model of interest

n
2. Replace model parameters with a O = argmincpz loss(X;, ©(C))) C € R*¢
differentiable context encoder - ®(c): R¢ > RI!

L
[0y, ...,0,] = ®(C)

3. (Optional) Re-parameterize the d(c; p, A) =YK_, & 6|
context encoder to

n
, /. =argmin, ZlOSS(Xi,CD(Ci; )
i

4. Learn with your favorite auto-differentiation library
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Contextual Meta-Models Generate Interpretable Local Models

O Fit black-box model

A
Explain black-box model / N
Data :> :> ¢ &/
. , \K K y /
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Vignettes of Contextualized Machine Learning
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Contextualized Treatment Benefits in Covid-19

Tree-based EBMs are great at modeling healthcare data,
but not differentiable. Can we combine EBM benefits with

contextualized treatment estimation?

Solution:

Outpatient
Medications

0y

Comorbidities
® =
Demographics

Pre-Admission

Single-task Untreated Mortality Risk

NAM Mortality Risk

Admission

Lol

Lab Tests

Vitals

Multi-task
NAM

Treatment
Benefit

Post-Admission

In-patient
Medications

Reveals that treatment effectiveness changes
based on inflammation and thrombosis factors:
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https://www.sciencedirect.com/science/article/abs/pii/S1532046422001022

Contextualized Gene Regulatory Networks

Learning Sample-Specific Contextualized Graphical Models

Network Archetype Dictionary
Wy Wit1 Wiz

el b

b4

— Sample-Specific

Gene Expression
Data X

Patient Context C Context Encoder ¢ Subtype Z (Archetype Weighting) Network W Training
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Contextualized Gene Regulatory Networks in Cancer

Brain Glioma Embeddings Reveal Network-Based Subtypes

Clinical Information Biopsy Composition Copy Number Alterations Driver Mutations
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Networks Organize Into Subtypes in Cancer

Network Subtypes
Cluster-of-clusters Subtypes

Histology
IDH1 Mutation Type
Whole-genome Doublmg

Transcription Regulatory

Modules Organize by

FUBPI
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B Network Subtype 1
B Network Subtype 2
] Network Subtype 3

M Cluster-of-clusters Subtype 1
M Cluster-of-clusters Subtype 2
[] Cluster-of-clusters Subtype 3

[J Astrocytoma histology

[ Oligoastocytoma histology
M Oligodendroglioma histology
B No histology data

[J IDH1 1p/19q co-deletion

B IDH1 mutation (other)

M IDH1 wild-type

B No IDH1 mutation type data

[J No genome doubling
B Genome doubling
[ ] Genome tripling or more

[0 wild-type gene
B Mutated gene
[ No mutation data

Institute of

I I I H Bl Massachusetts

Technology

Computer Science and
Artificial Intelligence Lab

CSAIL

S
L

BROAD

INSTITUTE

26



Key Takeaways

Contextualized Modeling

e Contextualized Machine Learning ,
parameters as functions of context

learns meta-models that generate
parameters from context.

e All differentiable machine learning
models can be expressed as
contextualized models.

e Available in PyTorch sklearn-like API:

contextualized.ml

o@ Contextuallzed
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I|I'- o @;E;g Computer Science and 2 BROAD 27

Technalogy CSMLArtlflmaI Intelligence Lab INSTITUTE

C, X, Y, 0,

6(C)

\

A

//


http://www.contextualized.ml

Thank youl!

e Ben Lengerich - blengeri@mit.edu
e Manolis Kellis - manoli@mit.edu
e Kellis Lab @MIT CSAIL

Q@ Contextualized
eterogeneous Modeling Toolbox

contextualized.ml

Demos at contextualized.ml/docs
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