FastML Science Benchmarks: Accelerating Real-Time Scientific Machine Learning

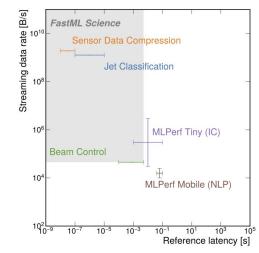
Javier Duarte³, Nhan Tran¹, Ben Hawks¹, Christian Herwig¹, **Jules Muhizi**^{1,2}, Shvetank Prakash², Vijay Janapa Reddi²

ML Challenge December 15th, 2022

¹Fermi National Research Laboratory
 ²Harvard University
 ³UC San Diego

FastML Science Benchmarks: Accelerating Real-Time Scientific Machine Learning

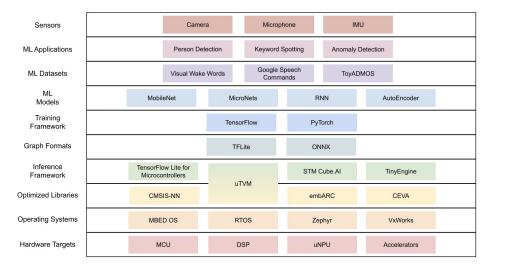
Javier Duarte³, Nhan Tran¹, Ben Hawks¹, Christian Herwig¹, **Jules Muhizi**^{1,2}, Shvetank Prakash², Vijay Janapa Reddi²


ML Challenge December 15th, 2022

¹Fermi National Research Laboratory
 ²Harvard University
 ³UC San Diego

Machine Learning!

- Rise of ML as a data processing framework for large data
- DNNs have proven to be versatile at complex problems
- Scientific domain latency budget a **much** smaller than industry


ML Commons

06.16.2021 — San Francisco, CA

MLPerf Tiny Inference Benchmark

Use Case	Dataset	Model	Quality Target	
	(Input Size)	(TFLite Model Size)	(Metric)	
Keyword Spotting	Speech Commands (49x10)	DS-CNN (52.5 KB)	90% (Top-1)	
Visual Wake Words	VWW Dataset (96x96)	MobileNetV1 (325 KB)	80% (Top-1)	
Image Classification	CIFAR10 (32x32)	ResNet (96 KB)	85% (Top-1)	
Anomaly Detection ToyADMOS (5*128)		FC-AutoEncoder (270 KB)	.85 (AUC)	

Table 1: MLPerf Tiny v0.5 Inference Benchmarks.

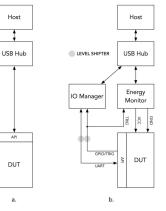
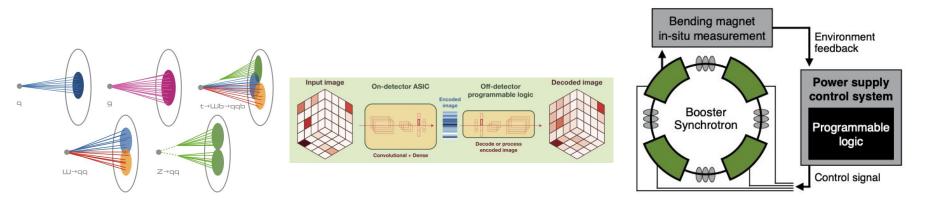


Figure 3: The two configuration modes of the benchmark framework for (a.) latency and accuracy measurement, or (b.) energy measurement.

Figure 4: The graphical user interface (GUI) for the benchmark runner.

Banbury, Reddi, et.al (2021). *MLPerf Tiny Benchmark*

Key Challenges


How do we design a generally applicable ML benchmark using specific **scientific** applications?

How can we design benchmark tasks to satisfy challenging **system-level** requirements while maintaining commonality?

FastML Science Benchmarks

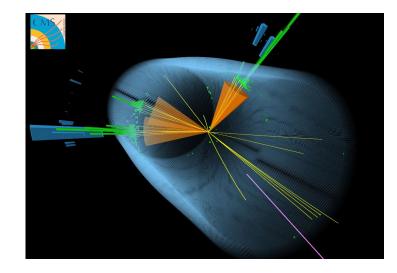
Supervised learning for rare physics event classification Unsupervised compression of sensor data

Reinforcement learning for accelerator beam control

Agenda

- Existing Works
- Benchmark Design Philosophy
- Benchmark
 - Supervised Learning for Physics event triggering
 - Unsupervised learning for lossy compression of sensor data
 - Reinforcement learning for accelerator beam control

Existing Works

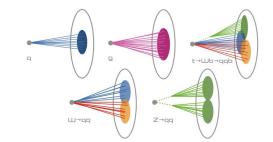

	Formalized Benchmark	Scientific Workload(s)	Edge Computing	Real-Time Constraints
FastML Science Benchmarks (this work)	\checkmark	\checkmark	\checkmark	\checkmark
SciMLBench (Thiyagalingam et al., 2021)	\checkmark	\checkmark	✓	×
LHC New Physics Dataset (Govorkova et al., 2021)	Х	\checkmark	\checkmark	\checkmark
MLPerf HPC (Farrell et al., 2021)	\checkmark	\checkmark	×	х
BenchCounil AIBench HPC (BenchCouncil, 2018)	\checkmark	\checkmark	×	Х
MLCommons Science (MLCommons, 2020)	\checkmark	\checkmark	×	Х
ITU Modulation Classification (ITU, 2021)	×	×	\checkmark	\checkmark

Benchmark Design Philosophy

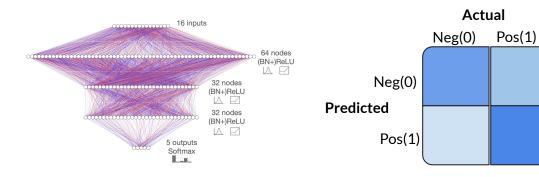
- Applicatications are for the extreme edge
- Contrasting features between tasks
 - Quantization specification
 - Task specific performance metric
 - System level constraints on each benchmark
 - Latency
 - Power & Area

Jet Classification

- CMS experiment observes ~ 40MHz collision rate
- Data rates must be reduced by **triggering***
- Custom FPGA platforms in use as triggers at µs latency

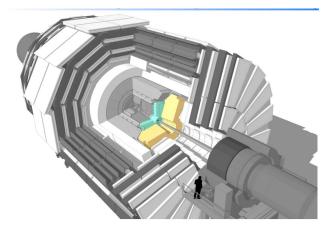


*triggering: real-time filtering to save only certain events


Supervised Learning: Jet Classification

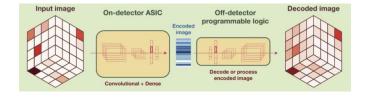
- Trigger only **interesting** events
- Jet tagging as supervised learning
- Baseline platform: Xilinx FPGAs within custom electronics

Metrics

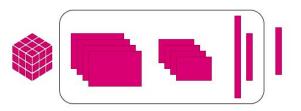


Constraints

Input	Pipeline	Real-time
precision	interval	latency
16b	150ns	1 µs


Sensor Data Compression

- High Granularity Calorimeter imaging detector produces large data
- Big data challenge posed by need to compression large for decision making
- Generalizable task to on-detector sensor data compression



Unsupervised Learning: Irregular Sensor Data Compression

- Compress data for downstream processing
- Unsupervised data compression
- Reference platform: ASIC compresses sensor data

Baseline Model

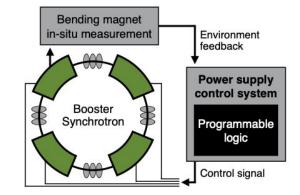
Metrics

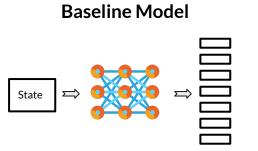
Similarity score using magnitude and distance of sensor data output

Constraints

Input	Pipeline	Real-time
precision	interval	latency
9b	25ns	100 ns

Beam Control


- Intense particle beam control is useful in general scientific work (optics, cancer therapy ...etc)
- Precise control key to operation at DOE facilities
- Control systems problem:
 - Fermilab booster synchrotron: drive particle beam intensity and reduce beam intensity loss



Fermilab Accelerator Complex

Reinforcement Learning: Beam Control

- Proton beam control critical to physics experiment
- Controls: reduce beam intensity loss
- Benchmark platform: Arria10 SoC

Metrics

Difference in target and measured beam intensities

Constraints

Input	Pipeline	Real-time
precision	interval	latency
32b	5ms	5ms

Review Key Challenges

- How do we design a generally applicable ML benchmark using specific **scientific** applications?
 - Abstract away scientific complexity where applicable
 - Allow for new additions from scientific domain experts
 - 0
- How can we design benchmark tasks to satisfy challenging **system-level** scientific while maintaining commonality?
 - Features such as quantization are innate to data at the edge
 - We vary our platforms from ASIC to FPGA
 - Take inspiration from MLPerf TinyTM to standardize platforms

Outlook

- Dennard scaling and Moore's will become more and more apparent
- Edge computing and processing exceedingly crucial
- Motivate other science domain experts to bring more applications

Visit the repo and checkout the paper!

🛱 fastm	achinelearning / fastml-science(Public	🔯 Edit Pins 👻	Cornell University
<> Code	🔆 Issues 🏦 Pull requests 🕑 Acti	ions 🖽 Projects 🖽 Wiki 🕕 Security	🗠 Insights	∃ 1 √ 1V > cs > arXiv:2207.07958
	१९ main → १९ 3 branches ा 2 tags		Go to file Add file - Code -	Computer Science > Machine Learning (Submitted on 16 Jul 2022) FastML Science Benchmarks: Accelerating Real-Time Scientific Edge Machine Learning Index Dense, Machine Learning
	julesmuhizi Merge pull request #9 fro	om fastmachinelearning/beam_control_dev	89ab2b5 23 days ago 🕚 34 commits	Applications of machine learning (ML) are growing by the day for many unique and challenging scientific applications. However, a crucial challenge facing these applications is their need for ultra low-latency and on-detector ML capabilities. Given the slowdown in Moore's law and Dennard scaling, coupled with the rapid advances
	 beam-control jet-classify 	update readme and include quantized MLP Update README.md (#4)	23 days ago 8 months ago	Intering Scientific data in real-time to accelerate science experimentation and enable more profound insignite. To accelerate real-time scientific edge ML hardware and software solutions, we need well-constrained benchmark tasks with enough specifications to be generically applicable and accessible. These benchmarks can guide the design of future edge ML hardware for scientific applications capable of meeting the nanosecond and microsecond level latency requirements. To this end, we present an
	sensor-data-compression	sensor data compression repo	2 months ago	initial set of scientific ML benchmarks, covering a variety of ML and embedded system techniques. Comments: 9 papes, 4 figures, Contribution to 3rd Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware (MLBench) at 5th Conference on Machine Learning and Systems (MLSys).
	🗋 .gitignore	Initial commit	8 months ago	Subjects: Machine Learning (cs.LG); Computational Physics (physics.comp-ph); Instrumentation and Detectors (physics.ins-det) Report number: FERMLAB-CONF-22-534-PPO-SCD Cite as: an on/v22207/3958 [cs.LG]
	LICENSE	Create LICENSE (#5)	8 months ago 8 months ago	(or arXiv:2207.07958v1 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2207.07958
				Submission history From: Javie Duarte (view email) (v1) Sat, 16 Jul 2022 14:30:15 UTC (394 KB)
	i≣ README.md		Ø	
	Fast Machine Lea	rnina Science Benchm	arks	

Correspond with us: Main contact - Javier Duarte jduarte@physics.ucsd.edu Presenter -Jules Muhizi - jmuhizi@fnal.gov