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Machine Learning!

3

● Rise of ML as a data processing framework for large data

● DNNs have proven to be versatile at complex problems

● Scientific domain latency budget a much smaller than industry



4Banbury, Reddi, et.al (2021).  MLPerf Tiny Benchmark



Key Challenges

How do we design a generally applicable ML benchmark using specific scientific 
applications?

How can we design benchmark tasks to satisfy challenging system-level requirements 
while maintaining commonality?
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FastML Science Benchmarks
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Supervised learning 
for rare physics event 
classification

Unsupervised compression 
of sensor data

Reinforcement learning 
for accelerator beam 
control



Agenda

● Existing Works

● Benchmark Design Philosophy

● Benchmark

○ Supervised Learning for Physics event triggering

○ Unsupervised learning for lossy compression of sensor data

○ Reinforcement learning for accelerator beam control
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Existing Works
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Benchmark Design Philosophy

● Applicatications are for the extreme edge

● Contrasting features between tasks 

○ Quantization specification 

○ Task specific performance metric

○ System level constraints on each benchmark

■ Latency

■ Power & Area
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Jet Classification 
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● CMS experiment observes ~ 40MHz collision rate

● Data rates must be reduced by triggering* 

● Custom FPGA platforms in use as triggers at µs 
latency

*triggering: real-time filtering 
to save only certain events



TN FN

TPFP

Supervised Learning: Jet Classification

● Trigger only interesting events

● Jet tagging as supervised learning

● Baseline platform: Xilinx FPGAs within custom electronics 
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Sensor Data Compression
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● High Granularity Calorimeter imaging detector 
produces large data

● Big data challenge posed by need to compression 
large for decision making

● Generalizable task to on-detector sensor data 
compression 



Unsupervised Learning: Irregular Sensor Data Compression

● Compress data for downstream processing

● Unsupervised data compression

● Reference platform: ASIC compresses sensor data
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Baseline Model Metrics

Similarity score using 
magnitude and distance 
of sensor data output
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Beam Control
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● Intense particle beam control is useful in general 
scientific work (optics, cancer therapy …etc)

● Precise control key to operation at DOE facilities

● Control systems problem:

○ Fermilab booster synchrotron: drive particle beam 
intensity and reduce beam intensity loss



Reinforcement Learning: Beam Control

● Proton beam control critical to physics experiment

● Controls: reduce beam intensity loss

● Benchmark platform: Arria10 SoC 
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Baseline Model Metrics
Difference in target and 
measured beam 
intensities

Constraints

Input 
precision

Pipeline 
interval

Real-time
latency

32b 5ms 5msState



Review Key Challenges

● How do we design a generally applicable ML benchmark using specific scientific 
applications?

○ Abstract away scientific complexity where applicable

○ Allow for new additions from scientific domain experts

○

● How can we design benchmark tasks to satisfy challenging system-level scientific 
while maintaining commonality?

○ Features such as quantization are innate to data at the edge

○ We vary our platforms from ASIC to FPGA 

○ Take inspiration from MLPerf TinyTM to standardize platforms
16
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● Dennard scaling and Moore’s will become more and more apparent

● Edge computing and processing exceedingly crucial

● Motivate other science domain experts to bring more applications 

Outlook
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Visit the repo and checkout the paper!

Correspond with us: 
Main contact - Javier Duarte  jduarte@physics.ucsd.edu
Presenter -Jules Muhizi -  jmuhizi@fnal.gov


