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Machine Learning!

Rise of ML as a data processing framework for large data
DNNSs have proven to be versatile at complex problems

Scientific domain latency budget a much smaller than industry
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Use Case Dataset
(Input Size)

Model
(TFLite Model Size)

Quality Target
(Metric)

Keyword Spotting | Speech Commands (49x10)

DS-CNN (52.5 KB)

90% (Top-1)

Visual Wake Words VWW Dataset (96x96)

MobileNetV1 (325 KB)

80% (Top-1)

Image Classification CIFAR10 (32x32)

ResNet (96 KB)

85% (Top-1)

Anomaly Detection ToyADMOS (5*128)

FC-AutoEncoder (270 KB)

.85 (AUC)

Table 1: MLPerf Tiny v0.5 Inference Benchmarks.
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Figure 3: The two configuration modes of the
benchmark framework for (a.) latency and accu-
racy measurement, or (b.) energy measurement.
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Figure 4: The graphical user interface (GUI) for
the benchmark runner.

Banbury, Reddi, et.al (2021). MLPerf Tiny Benchmark



Key Challenges

How do we design a generally applicable ML benchmark using specific scientific
applications?

How can we design benchmark tasks to satisfy challenging system-level requirements
while maintaining commonality?
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Agenda

e Existing Works
e Benchmark Design Philosophy
e Benchmark
o  Supervised Learning for Physics event triggering

o Unsupervised learning for lossy compression of sensor data

o  Reinforcement learning for accelerator beam control



Existing Works

Formalized | Scientific Edge Real-Time

Benchmark | Workload(s) | Computing | Constraints
FastML Science Benchmarks (this work) v v v v
SciMLBench (Thiyagalingam et al., 2021) v v v X
LHC New Physics Dataset (Govorkova et al., 2021) % v v v
MLPerf HPC (Farrell et al., 2021) v v X X
BenchCounil AIBench HPC (BenchCouncil, 2018) v v X X
MLCommons Science (MLCommons, 2020) v v ¢ X
ITU Modulation Classification (ITU, 2021) X X v v




Benchmark Design Philosophy

e Applicatications are for the extreme edge

e Contrasting features between tasks
0 Quantization specification
o  Task specific performance metric
o  System level constraints on each benchmark
| Latency

] Power & Area



Jet Classification

e CMS experiment observes ~ 40MHz collision rate
e Data rates must be reduced by triggering*

e Custom FPGA platforms in use as triggers at us
latency

*triggering: real-time filtering
to save only certain events
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Supervised Learning: Jet Classification

e Trigger only interesting events

e Jettagging as supervised learning

e Baseline platform: Xilinx FPGAs within custom electronics
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Sensor Data Compression

e High Granularity Calorimeter imaging detector
produces large data

e Big data challenge posed by need to compression
large for decision making

e Generalizable task to on-detector sensor data
compression
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Unsupervised Learning: Irregular Sensor Data Compression

Input image On-detector ASIC Off-detector

programmable logic
uuuuuuu

e Compress data for downstream processing -_
e Unsupervised data compression ot o rocss

e Reference platform: ASIC compresses sensor data

Baseline Model Metrics Constraints

Similarity score using

. . Input Pipeline | Real-time
magnitude and distance precision | interval latency
of sensor data output

9b 25ns 100 ns

Decoded image
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Beam Control

Fermilab Accelerator Complex

e Intense particle beam control is useful in general
scientific work (optics, cancer therapy ...etc)

e Precise control key to operation at DOE facilities

e Control systems problem:

o  Fermilab booster synchrotron: drive particle beam oo
intensity and reduce beam intensity loss



State

Reinforcement Learning: Beam Control

e Proton beam control critical to physics experiment

e Controls: reduce beam intensity loss

e Benchmark platform: ArrialO SoC
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Review Key Challenges

e How do we design a generally applicable ML benchmark using specific scientific
applications?

o Abstract away scientific complexity where applicable
o Allow for new additions from scientific domain experts

o

e How can we design benchmark tasks to satisfy challenging system-level scientific
while maintaining commonality?

o Features such as quantization are innate to data at the edge
o  We vary our platforms from ASIC to FPGA

o Take inspiration from MLPerf Tiny™ to standardize platforms
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Outlook

e Dennard scaling and Moore's will become more and more apparent
e Edge computing and processing exceedingly crucial

e Motivate other science domain experts to bring more applications
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Visit the repo and checkout the paper!
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Applications of machine learning (ML) are growing by the day for many unique and challenging scientific applications. However, a crucial challenge facing these
applications is their need for ultra low-latency and on-detector ML capabilities. Given the slowdown in Moore's law and Dennard scaling, coupled with the rapid advances

- in scientific instrumentation that is resulting in growing data rates, there is a need for ultra-fast ML at the extreme edge. Fast ML at the edge is essential for reducing and

il filtering scientific data in real-time to accelerate science experimentation and enable more profound insights. To accelerate real-time scientific edge ML hardware and
software solutions, we need well-constrained benchmark tasks with enough specifications to be generically applicable and accessible. These benchmarks can guide the

8 months design of future edge ML hardware for scientific applications capable of meeting the nanosecond and microsecond level latency requirements. To this end, we present an

initial set of scientific ML benchmarks, covering a variety of ML and embedded system techniques.
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