## HEPScore benchmark status

D. Giordano (CERN/IT)

GDB 13 Sept 2023



## Outline

- HEPScore23 (HS23) replaces HS06 to benchmark new hardware since April 1<sup>st</sup> 2023
- □ Today: project update since the last (April 12) GDB report
  - Recall the HS23 definition
  - Documentation
  - Measurements collected
  - New studies and development
  - Support and noticed issues



## HEPScore23

- □ 7 workloads included
- All workloads have a recent versio of the experiments' SW
  - Support x86\_64 and aarch64
- 3 Single process workloads +
   4 multi thread/process workloads
- □ Reference server:

Intel® Xeon® Gold 6326 CPU @ 2.90 GHz (HT=On)

| Ехр    | Workload                                      | x86_64 /<br>aarch64 | Sw version            |
|--------|-----------------------------------------------|---------------------|-----------------------|
| ALICE  | digi-reco                                     |                     | O2/nightly-20221215-1 |
| ATLAS  | <b>gen_sherpa (SP)</b> (*) SP: Single Process |                     | Athena 23.0.3         |
|        | reco_mt                                       |                     | Athena 23.0.3         |
| Belle2 | gen-sim-reco (SP)                             |                     | release-06-00-08      |
| CMS    | gen-sim                                       |                     | CMSSW_12_5_0          |
|        | reco                                          |                     | CMSSW_12_5_0          |
| LHCb   | sim (SP)                                      |                     | v3r412                |



## HEPScore23 validation campaign

- Since March 1<sup>st</sup>, measurements from a variety of servers and sites
  - ~15 sites
  - 46 distinct CPU models (Intel, AMD, ARM)
    - Including recent ARM nodes from vendors
  - Small spread [‰,%] in repeated measurements
  - Study of HS23 robustness:
     score is not significantly affected by the removal of one of the 7 workloads





## CPU models by year



|                                             | Fig  | ure o | f mer | it (FC | (M(  |   | _   |      |
|---------------------------------------------|------|-------|-------|--------|------|---|-----|------|
| lhcb-sim-run3-ma-bmk.sim:v1.0               | 0.08 | 0.07  | 0.10  | 0.11   | 0.06 |   | - 0 | .14  |
| atlas-gen_sherpa-ma-bmk.gen:v2.0            | 0.06 | 0.06  | 0.09  | 0.09   | 0.05 |   | - 0 | .12  |
| cms-gen-sim-run3-ma-bmk.gen-sim:v1.0        | 0.06 | 0.05  | 0.07  | 0.08   | 0.03 |   | - 0 | .10  |
| e-digi-reco-core-run3-ma-bmk.digi-reco:v2.1 | 0.05 | 0.05  | 0.08  | 0.07   | 0.07 |   | - 0 | 0.08 |
| lle2-gen-sim-reco-ma-bmk.gen-sim-reco:v2.0  | 0.05 | 0.05  | 0.08  | 0.08   | 0.03 |   | 0   | .00  |
| cms-reco-run3-ma-bmk.reco:v1.1              | 0.05 | 0.05  | 0.08  | 0.07   | 0.03 |   | - 0 | .06  |
| atlas-reco_mt-ma-bmk.reco:v2.0              | 0.04 | 0.04  | 0.05  | 0.05   | 0.04 |   | - 0 | .04  |
|                                             | СРР  | NT    | 2bit  | 4bit   | S23  |   |     |      |
| e modernization                             | 2017 | 2017  | 506 3 | 506.6  | Ξ    | ) |     |      |
| pared to HS06                               | SPEC | SPEC  | Ĭ     | Ť      |      |   |     |      |

HS23 is a more accurate representation of the that has taken place in HEP applications compared to HS06

- Figure of merit (FOM) is a high-level measure of that
  - Def.: Average deviation from linear fit



## End of the HEPScore deployment Task Force

#### At the WLCG MB on May 16 agreed to close the Task Force activity

Objectives accomplished

Coordinate the collection of new workloads Onboard WLCG sites for validation Recommend the HEPScore composition Strategy for HS06->HEPScore migration

Remaining activities are under the role of other bodies

- Support & development: HEPiX Benchmarking WG
- Accounting & monitor the adoption of HEPScore: Accounting WG



## Downfall vulnerability mitigation Vs HS23

## CVE-2022-40982

- Affected Intel processors: from the 6th (Skylake) to 11th (Tiger Lake) generation
- □ Mitigation: microcode update from Intel
  - Phoronix measured up to 50% performance penalties in extreme cases

(https://www.phoronix.com/review/intel-downfall-benchmarks)

□ Which effect for the HEP workloads?



Downfall attacks target a critical weakness found in billions of modern processors used in personal and cloud computers. This vulnerability, identified as <u>CVE-2022-40982</u>, enables a user to access and steal data from other users who share the same computer. For instance, a malicious app obtained from an app store could use the Downfall attack to steal sensitive information like passwords, encryption keys, and private data such as banking details, personal emails, and messages. Similarly, in cloud computing environments, a malicious customer could exploit the Downfall vulnerability to steal data and credentials from other customers who share the same cloud computer.

The vulnerability is caused by memory optimization features in Intel processors that unintentionally reveal internal hardware registers to software. This allows untrusted software to access data stored by other



## Downfall vulnerability mitigation Vs HS23

- □ No relevant effect of the mitigation measured for the HEP workloads included in HS23
- Results obtained in the 24 hours after the CVE announcement, thanks to the readiness of the benchmarking infrastructure at CERN

|                    |                                            |           | HEPscore score | CVE-2022-40982 |      |     |    |         |
|--------------------|--------------------------------------------|-----------|----------------|----------------|------|-----|----|---------|
| Microcode change 💎 | CPU Model 💎                                |           |                | Score before 💎 |      |     |    | Ratio 🍞 |
| 0x302              | Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz   | 0x5003302 | 0x5003604      | 709            | 709  |     |    | 1.00    |
| 0x3D2              | Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz | 0x5003302 | 0x5003604      | 715            | 704  |     |    | 0.985   |
| 0x201              | Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz   | 0x2006E05 | 0x2007006      | 691            | 699  | 44  |    | 1.01    |
| 0x30               | Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz   | 0xD000375 | 0xD0003A5      | 1018           | 1011 |     |    | 0.993   |
| 0x0                | AMD EPYC 7302 16-Core Processor            | 0x830104D | 0x830104D      | 981            | 993  |     |    | 1.01    |
| 0x0                | Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz  | 0x49      | 0x49           |                |      |     |    | 1.000   |
| 0x0                | Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz  | 0xB00001F | 0xB00001F      | 482            | 482  |     |    | 0.999   |
| 0x0                | Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz  | 0xB000030 | 0xB000030      |                |      | 114 |    | 0.999   |
|                    |                                            |           |                |                |      |     |    |         |
|                    |                                            |           | HS06 score CV  | VE-2022-40982  |      |     |    |         |
| Microcode change 🐬 | CPU Model 🐬                                |           |                | Score before 💎 |      |     |    | Ratio 💎 |
| 0x500              | Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz   | 0x2006B06 | 0x2007006      | 735            |      |     | 28 | 1.02    |
| 0x302              | Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz | 0x5003302 | 0x5003604      |                | 763  |     |    | 0.991   |
| 0x30               | Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz   | 0xD000375 | 0xD0003A5      | 1015           | 1013 |     |    | 0.998   |
| 0x3                | Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz  | 0x46      | 0x49           | 365            | 364  |     |    | 0.997   |
| 0x0                | AMD EPYC 7302 16-Core Processor            | 0x830104D | 0x830104D      | 1036           | 1029 |     |    | 0.993   |
| 0x0                | Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz  | 0xB00001F | 0xB00001F      |                |      |     |    | 1.000   |
| 0x0                | Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz  | 0xB000030 | 0xB000030      | 660            | 662  |     |    | 1.00    |



## Documentation

#### https://w3.hepix.org/benchmarking.html

### Update the official HEPiX working group page







## Documentation (II)

#### Includes:

- Legacy HS06 pages
- HS23 run instructions
- HS23 scores published
- Accounting instructions
- It's highly recommended to follow the provided instructions

and use the Suite script -

#### How to Run HEPScore23 Benchmark

| Requirements                                    |
|-------------------------------------------------|
| Run the HEP Benchmark Suite                     |
| <ul> <li>Script mandatory parameters</li> </ul> |
| <ul> <li>Publish results (Optional)</li> </ul>  |
| <ul> <li>DN extraction</li> </ul>               |
| Run HEPScore23 standalone                       |

Troubleshooting

HEP

- ulimit configuration on CENTOS7 (reason and procedure)
- CVMFS (as image repository) configuration

This document provides instructions on how to execute the HEPScore23 benchmark

#### Requirements

It is crucial that the server is fully dedicated to the benchmarking activity during the run, to ensure accurate measurements and prevent potential errors.

The server must have a minimum hardware configuration (see requirements below) and include the following packages:

- Container engine Apptainer (version 1.1.6 or higher);
- Python version 3.9 or higher;
- python3-pip;
   git

The user will need pip and git to install HEPScore23 as a Python package

Hardware requirements:

- A disk space proportional to the number of available cores on the server (about 1 GB per logical core) is necessa temporarily store the results;
- The server must have at least 2GB of RAM per logical core;
- ulimit configuration (see details below)

#### Run the HEP Benchmark Suite

While it is possible to install HEPScore23 standalone (see later), it is recommended to use the HEP Benchmark Suite alongside HEPScore23 to include in the benchmark report metadata about the server's running conditions. The meta includes details about the server's CPU RAM, disks, IP addresses, and other relevant information. In future versions c suite, there will be the capability to configure additional measurement plugins, expanding the functionality beyond its current tater. These new plugins will include options such as an energy consumption plugin or a load and memory u plugin.

The HEP Benchmark Suite can be installed using pip and git

A bash script has been developed to streamline the installation and running process. This script provides a fully comprehensive running procedure and enables the system administrator to install the HEP Benchmark Suite and HEPScore23, run the HEP Benchmark Suite, which in turn extracts the necessary metadata from the server, executes HEPScore20 and produces a final output document.

#### Script mandatory parameters

To use the bash script, users will need to provide a mandatory custom parameter to declare the specific site on whic benchmark is running. HEP-SPECO

THIS PAGE IS PROVIDED FOR LEGACY REA: How to run HS23 HS06, REPLACED BY HEPSCORE23 SINCE / HS23 score table

HEP

) THE PREVIOUSLY OFFICIAL BENCHMARK,

Techwatch -

About 👻

HS06 is the HEP-wide benchmark for measuring CPU performance. It has been developed by the HEPiX Benchmarking Working Group in order to replace the outdated "kSi2k" metric.

The goal is to provide a consistent and reproducible CPU benchmark to describe experiment requirements, lab commitments, existing compute resources, as well as procurements of new hardware.

Benchmarking 👻

HS06 is based on the all copp benchmark subset (bset) of the widely used, industry standard SPEC® CPU2006 benchmark suite. This bset matches the percentage of floating point operations which we have observed in batch jobs (~10%), and it scales perceively with the experiment codes.

HS06 is the official CPU performance metric to be used by WLCG sites since 1 April 2009.

Although the HS06 benchmark was initially designed to meet the requirements of High Energy Physics (HEP) labs, it is by now widely used also by other communities.

#### Tables of HS06 results



The migration strategy for the accounting side is detailed by the Accounting TF in this document. This strategy involves implementing software changes on the site side as well as APEL, EGI portal, WAU sides. To streamline the process and minimize the number of changes, several strategic approaches have been discussed within the WLCG collaboration, in particular at the Lancaster Workshop. These approaches have been endorsed by the WLCG Management Board during the Decomber 20th, 2022 meeting.

To summarize, the transition from HS06 to HEPScore23 should be gradual and seamless. This will be achieved through the following measures: The HEPScore23 benchmark will use the same scale factor as HS06, which is fixed on a reference server.

Sites are only expected to benchmark new resources with HEPScore23. Old servers do not need to be rebenchmarked for accounting purposes. This ensures that the installed capacity pledged by the sites will remain unchanged. Sites are free to re-benchmark their servers if they wish, but they are not required to submit this information to the accounting portal. However, they can still use the HEP Benchmark Suite to publish their results in the benchmark database, which is separate from the accounting informatoructure.

How do these procedures reflect what is done in a given WLCG site? Below we describe how to calculate the benchmarking factor depending on site configuration and how the report would look like in accordance with the new specification.

Example1: Site with a different cluster per CPU



## Benefit of running HS23 via the Suite script

Actively participate in building the community repository of results

- Sites send data to the centralized benchmark DB
  - Grid certificate DN to be included in the publisher list (read the doc)
- Automated analysis updates the public HS23 result table ~



WG Activitie:



## Data collected since March

96 entries: 55 CPU models,

~ 20 sites, multiple configs





# After the validation phase, sites contribute when new HW arrives



## The Suite offers even more...

Extended the metadata plugin library to timeseries metrics:

energy consumption, load, CPU frequency

- Can be correlated with the Benchmark score measurements
- Developed to answer to the increasing interest in energy Vs performance studies

307

309

310

311

312

313

314

315

316

318

319

320

321

322

323

372

and the need of a common dataflow

#### Example: Plugin Configuration

| {                                                                                   |               |
|-------------------------------------------------------------------------------------|---------------|
| "name": "power-consumption",                                                        |               |
| "description": "Retrieves power consumption of the system. Requi                    | ires elevated |
| <pre>"command": "ipmitool dcmi power reading",</pre>                                |               |
| <pre>"regex": "Instantaneous power reading:\\s*(?P<value>\\d+) Watts"</value></pre> | 5             |
| "unit": "W",                                                                        |               |
| <pre>"example-output": "\n Instantaneous power reading:</pre>                       | 124 W         |
| "expected-value": 124                                                               |               |
| },                                                                                  |               |
| {                                                                                   |               |
| "name": "load",                                                                     |               |
| "description": "Retrieves the one minute system load average. No                    | te that loa   |
| "command": "uptime",                                                                |               |
| <pre>"regex": "load average: (?P<value>\\d+.\\d+),",</value></pre>                  |               |
| "unit": "",                                                                         |               |
| "aggregation": "",                                                                  |               |
| "example-output": " 11:02:47 up 3:03, 1 user, load average: 0                       | .18, 0.38,    |
| "expected-value": 0.18                                                              |               |
| 1                                                                                   |               |

#### Plugins' Report



#### HEP Benchmark Suite Run Logic Plugins Data processing HW Metadata Configure Benchmark Validate Results Build Report ActiveMQ Parameters 404 000 Elastic Search Run Collect Publish Other Benchmark Results & Logs Benchmarks HS06 SPEC CPU2017 HEPscore (CPUs & GPUs) Other ± 🛭 👉 ± 🕲 🧼 ± 🕲 👉 ± 💰 🥧

#### 500 450 400 350 300 250 200 150 Timestam

Rebuild time series from stored data



GDB

## Benchmark GPUs (summer student)

- Summer Student activity at CERN
- Used a containerized Madgraph version ported on CPU+GPU
  - https://indico.cern.ch/event/1225408/contributions/5243830/
- Used the Suite plugins to collect energy consumption

| ugins:                                                                  |  |
|-------------------------------------------------------------------------|--|
| CommandExecutor:                                                        |  |
| metrics:                                                                |  |
| load:                                                                   |  |
| command: uptime                                                         |  |
| regex: 'load average: (?P <value>\d+.\d+),'</value>                     |  |
| unit: ''                                                                |  |
| interval_mins: 0.1                                                      |  |
| power-consumption:                                                      |  |
| command: sudo ipmitool dcmi power reading                               |  |
| regex: 'Instantaneous power reading:\s*(?P <value>\d+) Watts'</value>   |  |
| unit: W                                                                 |  |
| interval_mins: 0.1                                                      |  |
| gpu-power-consumption:                                                  |  |
| command: nvidia-smiquery-gpu=power.drawformat=csv,noheader,nounits      |  |
| regex: '(?P <value>\d+(.\d+)?).*'</value>                               |  |
| unit: W                                                                 |  |
| interval_mins: 0.1                                                      |  |
| gpu-usage:                                                              |  |
| command: nvidia-smiquery-gpu=utilization.gpuformat=csv,noheader,nounits |  |
| regex: '(?P <value>\d+(.\d+)?).*'</value>                               |  |
| unit: W                                                                 |  |
| interval mins: 0.1                                                      |  |
|                                                                         |  |





GDB

• CPU

Sockets:

GPU

## Profile performance of grid job slots

- Same CPU models can perform very differently from grid site to grid site (well known fact)
  - Confirmed submitting the Benchmark Suite as job payload to several sites on 8-cores job slots
    - Example: AMD EPYC 7452 32-Core SW & Computing week latalia Szczepanek score for baremetal node Atlas Jun 202-HT OFF ~22 20 CPU Cores 19 18 5 17 score for baremetal node HT ON ~12 OX-HE V\_CEP RALF Atlas "sites
- Instrumented the plugin extension to measure server load and memory utilization during the execution of HS23 (see next slide for the correlation study)



Measured HS23/core

## **Preliminary Analysis**

- Data retrieved running the Suite
  - Measured server load and HS23 of an 8-cores job slot
- Derived metrics:
  - X: HS23 / job core
    - Performance of each single core of a job slot of 8 cores
  - Y: load / physical core
    - when HT ON, a server fully loaded will be at 2
- Pretty good linear (anti-)correlation of server load and job slot performance
  - Offers the opportunity to investigate outliers and improve site configurations. Already done for a site







# GGUS support

- Available since April
  - 7 GGUS tickets received so far
    - 4: certificate DNs for data publications
    - 3: support
- Please prefer GGUS for traceability reasons
  - Few requests still received via email
    - 7: certificate DNs
- Results (json format) that could not be sent via the standard procedure can be sent via
   GGUS as attachment

| * Describe the<br>issue ?                                                                                                         | ★ → ABC - B I<br>Styles - Format                                                                                                                                               | <u>U</u> <u>I</u> <sub>x</sub> <u>i</u> ≡<br>• Markd | :Ξ   ୨୨   ∞ ∞   Β, Ω  <br>Iown   ⊙ Source   ?                                                                                  |               |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                   |                                                                                                                                                                                |                                                      |                                                                                                                                |               |
|                                                                                                                                   |                                                                                                                                                                                |                                                      |                                                                                                                                |               |
|                                                                                                                                   |                                                                                                                                                                                |                                                      |                                                                                                                                | Characters: ( |
| Concerned                                                                                                                         | other                                                                                                                                                                          | ~                                                    | VO specific 🔋 🔾 yes 💿 no                                                                                                       |               |
| v0                                                                                                                                |                                                                                                                                                                                |                                                      |                                                                                                                                |               |
| Affected site:                                                                                                                    | please select                                                                                                                                                                  | v                                                    | Affected ROC/NGI                                                                                                               | ~             |
| Affected site:<br>?<br>* Ticket<br>category                                                                                       | please select<br>Service Request                                                                                                                                               | ~<br>~                                               | Affected ROC/NGI                                                                                                               | ~             |
| Affected site:<br>7<br>* Ticket<br>category<br>Type of issue:<br>7                                                                | please select<br>Service Request<br>Benchmarking                                                                                                                               | v<br>v                                               | Affected ROC/NGI     Priority:? please select v                                                                                | v             |
| Affected site:<br>?<br>* Ticket<br>category<br>Type of issue:<br>?<br>Attach File(s)<br>(max. 2 MB<br>pro File)                   | please select         Service Request         Benchmarking         Browse         No file selected.         Browse         No file selected.                                   | •<br>•<br>•                                          | Affected ROC/NGI<br>* Priority: ? please select v<br>Browse No file selected.<br>Browse No file selected.                      | •             |
| Affected site:<br>?<br>* Ticket<br>category<br>Type of issue:<br>?<br>Attach File(s)<br>(max. 2 MB<br>pro File)<br>Routing inform | please select         Service Request         Benchmarking         Browse       No file selected.         Browse       No file selected.         ation Expert option, please s | v<br>v<br>v                                          | Affected ROC/NGI  * Priority: ? please select ~ Browse No file selected. Browse No file selected. y if you know what it means. | ~             |



## Issues seen so far running HS23

Contribute to extend the troubleshooting doc area

- https://w3.hepix.org/benchmarking/how\_to\_run\_HS23.html
- 1. Sharp increase of memory utilization for the Alice workload
  - Mainly for CPUs with high number of cores
  - Workaround: add large swap space. Future fix: Consolidate the Alice workload
- 2. selinux Vs Apptainer
  - Seen in few cases. workaround: disable SELinux. FATAL ERROR:write\_xattr: failed to write xattr security.selinux for file /image/root/.exec
- 3. Large cores count CPUs
  - ulimits on CentOS7 may need to be unlimited
  - CVMFS used as registry: max number of open files to be increased (CVMFS\_NFILES)
- 4. Sporadic failures of Atlas workloads (under investigation)



# Ongoing work: HEP Workloads

□ Allow to load a configurable number of cores

- □ Improve the validation of input params
- □ Study score stability Vs number of events/thread
- Progress on GPU workloads



## Summary

□ HEPScore23 is passing the test of the user adoption

- Several studies ongoing
- □ The Benchmark Suite collects also usage metrics
  - To be released in v3.0 in the coming month
- □ Some workloads need consolidation to avoid failures
  - New containers will be released
  - Implication: the HS23 hash will change!

The effect on the score itself will be small

- The accounting should keep track of these changes



