Security Service Challenge SSC-23.03, challenging incident response of CMS resources.

D. Crooks 1,3 S. Gabriel 2,3 K. Ellis 1 EGI CSIRTs IRTF

1UKRI STFC 2Nikhef 3EGI CSIRT

GDB 13.12.2023
Introduction
Overview

- Evolution of the Security Landscape
- Security Architecture
- Challenging the Security Architecture
- Blue Team/Red Team
- Results
- Q ’n A
EGEE: Centrally coordinated infra, one set of policies, homogeneous grid middleware

VO specific Workload management systems emerged late in EGEE

EGEE ⇒ EGI, OSG, NDGF, who takes care of operational security?, and what does this imply?

More grid middleware software flavours, VO WMS became standard.

Virtualisation Technologies (Cloud, Container technology)

New AuthN/Z technologies (Tokens), external Identity Providers (Social Media accounts, Identity Federations)

Operational security in "The Grid" got more complex.

(WLCG Security on purpose not mentioned here :-) new WLCG Security Officer just started)
What are the controls and processes we have in place to support our operational security?

Which of these do we want to test in this exercise?

These are defined in the scope of EGI CSIRT; part of this exercise is also to explore how to most effectively collaborate across the full WLCG scope.
Operational Security Architecture [2]

<table>
<thead>
<tr>
<th>Control/Process</th>
<th>Detail</th>
<th>Examined in this exercise?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability Handling</td>
<td>Using pakiti to poll worker node patch status and correlate with critical vulnerabilities</td>
<td>No; part of daily operations for IRTF</td>
</tr>
<tr>
<td>Site communications</td>
<td>Handling communications with sites based on specified security/CSIRT contacts</td>
<td>Yes</td>
</tr>
<tr>
<td>Central suspension</td>
<td>Using ARGUS network to disseminate DNs to be suspended</td>
<td>Yes</td>
</tr>
<tr>
<td>Incident response procedures</td>
<td>Using SEC01 and otherwise to perform incident response across the infrastructure</td>
<td>Yes</td>
</tr>
</tbody>
</table>
What, Why, How (EGI CSIRT perspective)

Goals of the Security Service Challenge (SSC) I, Assessment Security Incident Management

- EGI CSIRT: Test our incident response capabilities, are our procedures ready to deal with a multi Resource Center (RC) incident
- Assess the required collaboration with partner Security Teams (OSG, eduGAIN)
- How does it look at boarders? Collaboration with Identity Providers Security teams

Goals of the Security Service Challenge (SSC) II, Assessment of the Incident Response activities, Forensic skills.

- Containment: act on a compromised account, suspend access to the infra
- Stop, and analyse malicious activities -
- → Capture the flag https://ssc.egi.eu/
The Playground
Old map, for illustration purposes only
The playground, type of resources

Compute Clusters

Clouds

Federated Cloud

Cloud 1

Cloud 2

Cloud 3

Cloud 4
170+ Resource Centers distributed over 40+ countries in WLCG are coordinated through the following organisations:

- OSG https://osg-htc.org/networking/, US based RCs
- EGI https://egi.eu, ... the rest

A tempting target for crypto currency mining, d-dosing, ... To get ready the Incident Response Procedures have to be harmonized across the organisations.
Access to the Playground, Identities
Access, Identity Providers

- x509 certificates, CAs
 - meanwhile often coupled to institutes HR data
 - transition to tokens started.
- IdP proxy (egi-checkin)
 - Federated Identity Providers (eduGAIN)
 - Social Media accounts
 - EGI Check-in serves as a seamless bridge, enabling more than 17,500 registered users to access 150+ services effortlessly, using their own institutional identity providers and community AAI services.
Access, compromised Identities

- x509 certificates, CAs
 - Certification revocation, strict rules on revocation, but possible
- IdP proxy (egi-checkin)
 - eduGAIN provides through SIRTFI a handle for Incident Response
 - good luck with social media accounts
Access through Virtual Organisations
Users are not granted access to the resources directly, rather they have to join a Virtual Organisation (VO).

A VO is a group of people (e.g. scientists, researchers) with common interests and requirements, who need to work collaboratively and/or share resources (e.g. data, software, expertise, CPU, storage space) regardless of geographical location.

VOs can suspend their users based on token, certificate DN.

RCs decide which VO they support, grant access to (a fraction) of their local resources, RC can block access for individuals, based on their certificate DN.
The Red Team
Red Team, the attack plan

Goals: Use the nice Playground for own purposes

- Crypto Currency Mining (we must not make money from the resources, start own currency (egoin))
- Rent out the resources under our control for DDoS campaigns, ...
Scenario

- Get credentials, and use them for ...
- Deploy an attack infra (command and control system, ...)
- Create a Botnet on the infrastructures
- Does this seem unrealistic? Well, no.
Red Team, the attack plan, needed ingredients

3 Major ingredients
- Credentials that give access to High Throughput computing
- Credentials that gives access to Cloud Resources to host the attack infra
- Attack infra
Get Identities, access to the infrastructure
Access to Compute clusters

x509 credentials registered at CMS VO

- Coordinate with CMS VO to provide credentials used for the SSC
Identities from Social Media and Federated Identity Providers (ex. eduGAIN) can be used in egi-checkin (IdP proxy).

Motivation: several incidents with crypto currency mining, hosting of problematic material, let’s make this part of the exercise.

- Social media account, well that’s easy …
- Identity from Federated IdP.
 - Find IdP that wants to collaborate on this security research project, thanks DFN-AAI
 - Invent a person, and provide it with some identity.
 - Enrol this identity in a VO that has access to cloud resources.
 - …see next slides Resilience of the VO membership vetting process
What people get to in after work sessions

Every Identity needs some background to stay consistent, let's try this:
What people get to in after work sessions

#0: pretext impersonating a researcher in need of cloud resources

Welcome Dr Sobchack

- Dr Walter Sobchack is a researcher, looking for cloud resources to do some analysis in the context of their research
 - Identity card
 - Name: Walter Sobchack
 - Title: Dr
 - Institute: Nizhny Novgorod State Academy of Medicine (Russia)
 - Email: dr.walter.sobchack@gmail.com
 - Research papers - online proofs
 - https://www.researchgate.net/scientific-contributions/DM-Sobchak-33763131
 - Content already available online, from a real researcher with a similar name
 - Inspiration: Walter Sobchak character from "The Big Lebowski" movie
 - https://coenbrothers.fandom.com/wiki/Walter_Sobchak
1: Getting a social media account integrated with Check-in

May options to choose from

- Google, GitHub, ORCID, LinkedIn...

- Decided to go with a **Google account** as it also provides a convenient way to have a **working email address**
 - Easy to create and manage
 - **One requirement**: having a phone number used at account creation
What people get to in after work sessions

1: Dr Walter Sobchack's Google account
An easy first step

- Welcome Dr Sobchack!
 - Email: dr.walter.sobchack@gmail.com
What people get to in after work sessions

EGI Security Service Challenge

- Overall goal: deploying VMs for an attack spreading across the EGI infrastructure and services
- Some mapping with MITRE ATT&CK knowledge base:
 - Establish Accounts via a Trusted Relationship, interacting with a Command and Control aiming at doing Resource Hijacking
- Persona:
 - Uli Kunkel, a German staff researcher
 - Account from an eduGAIN federated trusted IdP
 - Online presence to appear more legitimate
 - A personal page created
 - Real researchers having similar names and public information, including publications
- Caught during the initial vetting process
 - Kudos to the VO managers!
 - Eventually joined a VO allowing to deploy VMs...
The Attack Infrastructure
Red Team, Find the right people

- Middleware Expertise
- Incident Detection Expertise
- Malware/Forensics Expertise
- Job Submission Expertise
- CMS specific Expertise
- Identity Federation Expertise
- Incident Response Expertise
- Federated Services Expertise
- International Liaisons
- CMS Liaisons
Find space in everyone’s agenda

Major coordination task, at the end a multiple days hackaton at CERN resulted in the needed progress. Expert knowledge in a wide area needed.
RedTeam, explore target’s technology & infra

- RCs running HTCondor
- RCs running ARC-CE
- CRAB pilots
- CMS Connect pilots
- Storage (out of scope)

World wide env’ment
- Heterogenous setups
- Local solutions
- Different deployment models
- Range: shoebox ←→ HPC
- Many kernel versions
- Blue team tools can turn red
Build a framework to talk to frameworks that talk to frameworks that talk to compute elements that run our malware that returns commands that runs some other file that talks to another framework that looks like actual malware.
RedTeam, Select a malware framework

Write it yourself?
- Not enough time
- Why reinvent the wheel
- Full control over functionality

Vet an existing framework
- Open Source
- Open Source
- Limited investments
- No built in grid support
Red Team, Submit some jobs, look around

- Initial tests of the malware
 - Submit to friendly sites (Red team developers’ home institutes)
 - Prevent actual response from local admins
Pakiti (https://github.com/CESNET/pakiti-server) is a useful tool.
Red Team, Start the SSC

Murphy’s Law, obviously

➤ C2 Software breaks spectacularly
 ➤ Reset your database (bad, bad choice)

➤ Get caught scouting environments

➤ Miner traceability is sub-optimal

Find the right balance between red & blue

Hide behind cms.nikhef.de (as opposed to nikhef.nl)

➤ Let’s see how well known Nikhef is as an institute :-)

The Red Team
Red Team, Check your own responsibilities

SSC23: Incorporate MISP into the collaborative CSIRT response

- EGI CSIRT internal task, even *we* gain something from this SSC :-)
- Listen to David Crook’s talks on MISP/collaborative SOCs
The Blue-Teams
Goal of the blue team activities

Coordinate security response activities over:

- 4 Organisations (EGI, OSG, eduGAIN, CMS VO).
- 58 Resource Centers (with local security teams).
- 141 gateways to the infra (controlled by the local security teams, proxy gateways controlled by VO).
- 2 proxy gateways that potentially circumvent local access control mechanism.
- Stop 2 Credentials from accessing the infras.
The task
The Task

- Identify affected Resource Centers, Organisations.
- Stop malicious processes on the affected Infra.
- Stop/Suspend accounts used to initiate the malicious processes.
- Collect sufficient forensics information to resolve the incident.
The Communication Endpoints
The coordination, inclusive the assessment of feedback for further intel sharing was done by 2 Persons. **Heavily Understaffed**
The Results
Results, what was evaluated

Goal: Assessment of the Incident Response capabilities at the Resource Centers

- Communications: Response times
- Containment: Stop malicious processes, suspend reported credentials
- Forensics: On/Offline forensics of the malicious processes running at the resource center. Capture The Flag, participation optional.
Resource Centers Response Times
Communications, Response Times
Resource Centers Incident Response capabilities
Containment, Suspend malicious credentials

Gateway system 1, local resource security teams

Start: Wed Mar 29 16:27:24 2023
Last gateway closed: Mar 30 03:00:00 2023
Containment, Suspend malicious credentials

Gateway system 2, local resource security teams.

Start: Wed Mar 29 16:27:24 2023

Last gateway closed: Mar 30 03:00:00 2023
Containment, Stop malicious processes

Kill the botnet, local resource security teams.
Stop malicious virtual machines. Kill the attack infrastructure, C2, Content delivery network, ...

- Significant delay between invalidating IdP identity at Federated IdP and the lifetime of VMs (or processes) started by that identity is an issue.
- on infrastructure IdP Proxy and the started VMs related to this identity (addressed EGI internally).
- Token Lifetime (is) was an issue.
- How can we mimick Certificate-Revocation-List functionality from the x509 world in the Federated Identity world?
Resource Centers forensic capabilities
Capture The Flag, registration

Registration to the CTF is optional, 18 Teams, 39 Users participated
Capture The Flag, example challenge

The Results

Challenges

Sections
- Forensics: 0
- The end: 0
- Bphnshg: 3000

Online analysis
- Network connection: 100
- Identify the process: 200
- C&C set: 500
- The currency: 300
- Hidden configuration file: 100
- C&C connections: 500
- Hidden password: 300

Static analysis
- Binary compilation details: 200
- Client identification: 400

Basics
- EGI Security Contact: 50
- Time to report incident: 50
- SVN archiver: 100
- EGI CSIRT POP key: 300
Capture The Flag, Result statistics

The Results

- 39 users registered
- 18 teams registered
- 63 IP addresses
- 5900 total possible points
- 16 challenges
 - EGI Security Contact has the most solves with 17 solves
 - C&C bot has the least solves with 6 solves

![Graph showing solve counts for different challenges](image-url)
Capture The Flag, Result Scores

The Results

<table>
<thead>
<tr>
<th>Place</th>
<th>Team</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9900</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9900</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8040</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4800</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4700</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>3200</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>3300</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>3300</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>3300</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>3200</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2100</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

Powered by CTF4

Acceptable Use Policy - Data Protection

The Results
Inter organization coordination
Inter organization coordination

EGI/OSG

- Clear handover not implemented, daily meetings to synchronize the activities in the organisations needed.
- Collaboration with IdP worked flawless, very limited impact of the incident, therefore limited involvement of eduGAIN CSIRT. (OSG, eduGAIN)
- Very good collaboration with CMS Security.
What comes next
New processes: Threat Intelligence

- Historically, indicators of compromise (IOCs) such as IP addresses and file checksums have been communicated by the EGI CSIRT IRTF by broadcast emails to security contacts.
- This leads to delays before new information can be shared, as repeated emails would lead to overload.
- In the modern research and education landscape, where the risk from cybersecurity attack is acute, we must work collaboratively to share accurate and timely threat intelligence - IOCs - in close to real time.
Automated Threat Intelligence in this SSC

- This challenge included a side component using the MISP threat intelligence sharing platform to create a shareable event encapsulating all the intelligence related to the exercise gained through the investigation
 - https://misp-project.org
- MISP event built by team at STFC during challenge
- Next step is to test this against Security Operations Centres being deployed
Security Operations Centres capabilities

- A Security Operations Centre (SOC) is a collection of people, processes and technology that augments the capabilities of a security team by aggregating and enriching security monitoring data, correlated with sources of threat intelligence, to improve overall incident response and investigation capabilities.

- The SOC Working Group was established to create reference designs for the deployment of such a Security Operations Centre in a R&E environment:
 - https://wlcg-soc-wg-docs.web.cern.ch

- In particular, the goal of this group is to allow sites to actively use threat intelligence by integrating it systemically into their security monitoring systems.
SOC WG Reference Design v1

Data sources
- MISP
 Threat Intelligence Sharing
 Essential
- Zeek (Bro)
 Intrusion Detection System
 Deep Packet Inspection
 Optional
- netflow/sflow
 Network flow metadata
 Optional

Data pipelines
- Logstash pipeline
 JSON logs
 Filebeat
- Logstash pipelines
 ElastFlow

Storage & visualisation
- Elasticsearch
 Real Time Indexing
 Essential
- Kibana
 Visualisation
 Essential

Alerting
- Enrichment, correlation, aggregation
 Optional
- Elastalert
 Optional
<table>
<thead>
<tr>
<th>Threat Intelligence</th>
<th>Data sources</th>
<th>Messaging, Transport and Enrichment</th>
<th>Enrichment sources</th>
<th>Storage</th>
<th>Visualisation</th>
<th>Alerting + Incident Response</th>
</tr>
</thead>
</table>

External interfaces
Combining the SSC and SOCs

- An important followup to this challenge is to work with sites that have deployed SOC capabilities to understand how these would have observed the ongoing events of the challenge
 - Such as STFC, Nikhef and CERN
 - Using the MISP event developed during the challenge
- The ultimate goal is to use the MISP threat intelligence sharing platform to make these threat feeds available
- EGI CSIRT now has the tooling to share MISP events using a R&E instance hosted at CERN, available to the community
 - Need to build this robustly into our procedures
Active collaboration

- Ultimately a key goal of these challenges is to improve the collaboration between
 - Sites and security teams
 - Security teams and VOs
 - Security teams

- Between challenges, it is essential to maintain these links - through dedicated meetings, workshops and conferences such as this

- As with all collaboration, this is a continuously evolving area as people leave and join teams, and as infrastructure topologies change over time
 - Building and maintaining trust is particularly important in this domain
The next challenge

As we look to the next challenge, what aspects could we consider?

One option: limit the scope to test particular areas
 - This would allow key processes to be tested independent of the whole infrastructure
 - Potential for higher challenge cadence where appropriate
 - Interspersed with full challenges

This challenge had a far larger scope that previously; by design
 - It is essential for us to test our response to our current complex landscape

How do we balance this increasing challenge complexity with security team resourcing?
 - Maintaining sufficient blue team capability
What are the lessons we can take from this exercise
 - where are the opportunities to build in the future?
- Focus on EGI and OSG as NDGF doesn’t have CMS sites (we believe)
Site communications

EGI: Issues came from the initial comms check which impacted effective identification of participating sites

OSG: Comms handled by USCMS

➢ To take forward

➢ Refining comms check apparatus and continue collaboration with US Experiment infrastructures in combination with OSG security team
Central Suspension

EGI
Central process worked where in place
OSG
Not currently part of central suspension process

➢ To take forward
➢ In concert with Authz and Token Trust & Traceability working groups, develop new model for central suspension in the context of the token translation
Incident Response Procedures

EGI

Broadly effective with clear need for more resources for blue team

OSG

Emphasised importance of working closely with experiment teams

To take forward

The process of developing this exercise was critical in understanding the contact points particularly between EGI CSIRT and experiment security teams; opportunity to build on this
Key outcome

- From EGI CSIRT perspective, this exercised emphasised again the importance of working closely with experiment security teams and staff.
- Experiments of course provide continuity in their scopes across international boundaries; opportunity to work closely on effective security operations across the board.
Conclusions
The complexity of the coordination of incident response activities is huge.
- Sufficient manpower needed for the coordination task.
- Plan for inter-organisational meetings at least once a day.
- Work towards automation, monitor the activities as far as possible.
- Various flaws in the response procedures detected and addressed (check efficiency of the current workflow, implement control loops)
Review SIRTIFI, how do we support automation of threat intel sharing?
How can we address chained identities (chained proxies).
What would be realistic scenarios for future exercises.
What format should these exercises have (table top, "cheap"; hands-on exercises, "more expensive"?)
Work towards automation, monitor the activities as far as possible.
Various flaws in the response procedures detected and addressed (check efficiency of the current workflow, implement control loops)