

Tape evolution with dCache

Tigran Mkrtchyan for dCache team pre-GDB

dCache Tape Connectivity

- Native to dCache
 - dCache == disk cache on front of tape
 - The essential part of the dCache design
 - Provides fill functionality with/without HSM
 - Tape and disk files can be mixed on a single data server
- Write-back / Read-through cache behavior
 - Transparent for the users
 - Available via all protocols (subject to authorization)
- Stage Protection
 - user/VO/storage class/protocol
- Supports multiple HSM on a single instance
- Stores tape location as opaque data provided by HSM

Interfaces to HSM

- Execute external migration script
 - Stupid, Simple, Genius ...
 - Reference implementation of driver API
- Plugable driver Java API:
 - Suitable to create efficient HSM connectivity
 - ENDIT (Efficient Northern dCache Interface to TSM)

Stupid, Simple – Genius!

- Works with any thing that cans store data
 - OSM
 - EnSTORE
 - HPSS
 - TSM
 - SGI DMF
 - Amazon S3
 - dCacache

dCache ⇐⇒ HSM Link

DESY.

• Files belong to storage classes & and HSM type

```
<storage-class>@osm
```

• Pools configured to interact with HSMs

```
hsm create osm siloA script \
```

-command=hsmcp.py

• Stored file have information about HSM type and hsm specific identifier

osm://siloA/xxxxxxxxxxxxxx

Pool ⇐⇒ HSM Connectivity

The Restore Queue

The Restore Queue

The Restore Queue

- Group recalls by tapes
- Recall triggered by:
 - size
 - max waiting time
- Number of parallel recalls based on number of tape drives

pre-Restore Space Allocation

- Never block on space allocation when tape is mounted!
- Space allocated only for requests sent to HSM

pre-Restore Space Allocation

• Never block on space allocation when tape is mounted!

• Space allocated only for requests sent to HSM

dCache, Tape storage evolution

Lazy Space Allocation (ENDIT 2.0?)

- Do (all must apply)
 - Plugin is used
 - Tape system has internal disk
 - HSM tolerates 'blocked on allocation'
- Don't (if any is true)
 - Script is used
 - Drive directly writes to pool
 - 'blocked on allocation' blocks HSM (or Drive)

Tape Aware Components

DESY.

- SRM, TAPE-API (BULK)
 - Accept request from users and forwards to PinManager
 - Keeps state in local DB for reporting
- Pin Manager
 - Squashes multiple requests
 - Uses Pool Manager to stage the file
 - Keeps state in local DB to handle unpin and restarts
- Pool Manager
 - Selects appropriate pool for stage
 - Retries on errors
- Pool
 - Allocates space on the pool
 - Forwards the request to the tape system

(Extremely) Simplified CTA design

(Extremely) Simplified CTA design

Deployment at DESY

dCache, Tape storage evolution

dCache+CTA Status

- DESY.
- Seamless integration with dCache is merged into upstream CTA code at CERN
 - Starting CTA release {4,5}.7.12
- The existing ENSTORE/OSM tape format is supported for READ
 - The ENSTORE/OSM tape catalog conversion procedures are successfully tested at DESY and Fermilab.
 - dCache+OSM \rightarrow dCache+CTA
 - dCache+EnSTORE \rightarrow dCache+CTA
- dCache+CTA is deployed at DESY for BELLE-II, EuXFEL
 - ~2PB/week (3.4 GB/s, 9 drives)
- dCache+CTA deployment replicate to by other HEP sites
 - Fermilab and PIC Barcelona have successfully replicated DESY setup (currently dCache + ENSTORE).

Setup at DESY (Duct Tape & WD40)

- PostgreSQL as DB
 - Long experience with dCache and OSM
- NetApp NFSv4.1 volume as ObjectStore
 - Little to no expertise in CEPH
- Four drives per tape server
 - Operational mode of OSM
 - (Almost) No issues observes
- Dedicated node (taped) for the maintenance task
 - Much better stability

by Norm Wright

Production Deployment at DESY

Future Work

- Tape DDoS protection
 - Some experiment workflows are not tape friendly
- True 'stage buffer'
 - Mark transferred files as best candidates for eviction
- Migrating Tape scheduler to PinManager
- Deeper integration with CTA
 - Handle pool restarts
 - Process requests by creation time

Prominent Changes in Tape Interface

- Bulk cancel of store/restore requests
- Update driver-based HSM (ENDIT, dcache-cta) connectivity without restart
- Propagate file creation time/path/xattr to HSM driver
- Improved error handling, scalability, configuration

- Tape operation is an essential part of dCache design (dCache = disk cache on front of tape)
- All dCache development sites (DESY, FNAL, NeIC) depend on tape connectivity and constantly improving it functionality
- DESY and FNAL teams work on dCache⇔CTA integration for and migration of existing systems
- Despite dCache, tape is a non-shareable resource, therefore, it should be used wisely

Thank You!

More info: https://dcache.org To steal and contribute: https://github.com/dCache/dcache https://github.com/dCache/dcache-cta Help and support: support[&dcache.org, user-forum[&dcache.org]

Multiple Faces of Tape

At Tier-0

- High data ingest rate
- Multiple parallel streams
- High durability, multiple copies on different media
- Long-term nearline
 access
- Small file handling

At analysis facility

- Automatic data migration
- Bulk recall on periodic basis
- Long-term nearline access
- Recall prioritization

Data Archive

- Manual data migration
- Long-term preservation
- Automatic technology migration
- Self-healing

Nearline CTA Storage Driver

Restore Aware Components

