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Outline

• Intro and motivation

– What are event generators in High Energy Physics

– Why is it interesting (and possible!) to speed them up using CPU vectorization or GPUs

• The madgraph4gpu project: a selection of interesting results on Intel CPUs, GPUs, compilers and APIs

• Summary
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MC EVENT GENERATION (MC DATA)

Simulate physics process in beam collisions

Output: particles produced in beam collision

MC SIMULATION + DIGITIZATION (MC DATA)

Simulate interaction of collision products with detector

Output: simulated electronic signals  

RECONSTRUCTION (MC DATA)

Translate electronic signals to

particles passing through the detector

RECONSTRUCTION (REAL DATA)

Translate electronic signals to

particles passing through the detector

ANALYSIS

Compare real data and MC data with statistical methods – measure parameters, search for new processes 

SIMULATED DATA PROCESSING

(“MONTE CARLO”)

REAL DATA PROCESSING

Event generators: the first step in the HEP simulation chain

Around 10-20 % of LHC computing CPU costs 

(hence: important to speed them up!)

Theoretical physics (Feynman diagrams)

Monte Carlo methods (random numbers)
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Event generators: why CPU vectorization and GPUs?

• CPU vectorization and GPUs are widely available to HEP for processing...

– Most of the CPUs in our computing Grid have at least AVX2 SIMD

– GPUs are becoming more and more available to us especially at HPC centers

• ... but our software, so far, generally underexploits them 

– Example: Monte Carlo detector simulation has a lot of stochastic branching (makes lockstep processing difficult)

• Event generators, conversely, are ideal software workflows for SIMD and GPUs!

– Monte Carlo sampling of many data points → Data parallelism with near-perfect lockstep processing!

SAME CALCULATION

ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing

Good for GPUs (SIMT) 

and vector CPUs (SIMD)
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Porting Madgraph to CPU vectorization and GPUs

• Madgraph5_aMC@NLO: one of the workhorses for event generation in ATLAS and CMS!

• The madgraph4gpu project (started Q1 2020): speed up Madgraph5 using GPUs and vector CPUs 
–Code repository, CI tests, issue tracker: https://github.com/madgraph5/madgraph4gpu

–More details: vCHEP2021 paper, ICHEP2022 paper, CAF2023 talk

• Port to GPUs and SIMD the parallelizable part (“Matrix Element” calculation)
–This is the main CPU bottleneck (95% or more) in the current Fortran implementation

–There is also a non-negligible (up to ~5%) scalar part (new bottleneck due to Amdahl) https://doi.org/10.22323/1.414.0212

PoS(ICHEP2022)212

“Matrix Element” calculation (parallelizable)

Auto-generated code for each physics process!

“Madevent” framework (scalar overhead)

MADEVENT

(NOW: SCALAR)

ME CALCULATION

(DATA-PARALLEL)

MOMENTA

MATRIX ELEMENTS

MADEVENT

(NOW: SCALAR)

https://github.com/madgraph5/madgraph4gpu
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://indico.cern.ch/event/1207838/
https://doi.org/10.22323/1.414.0212
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CUDACPP vs SYCL implementations (for CPUs and GPUs)

SYCL (+Kokkos, Alpaka): alternative implementation

• Write code once for many CPU/GPU vendors

• GPUs: support NVidia, AMD and Intel out-of-the-box

– Limited support for vendor-specific features

• CPU SIMD: vectorization added Jan 2023, WIP

– sycl::vec (also based on clang compiler extensions)

• CPU multithreading: out of the box

• Compiler: dpcpp (aka "icpx -fsycl"?)

CUDACPP: main implementation

• 95% common code + a few #ifdef's for CUDA vs C++

• GPUs: designed for NVidia (will also add HIP for AMD) 

– Full feature support, e.g. tensor cores, streams, graphs

• CPU SIMD: designed upfront for C++ vectorization

– gcc and clang compiler vector extensions

• CPU multithreading and heterogeneous modes: WIP

• Compilers: nvcc + gcc, clang, icpx

CUDACPP is where we add new features first for the integration with existing user applications

For the moment: we plan to continue development in parallel using both approaches – comparisons are very useful!

https://www.khronos.org/sycl/
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(CUDACPP implementation on CPUs)

Vectorized C++ on Intel CPUs

C++ compilers: gcc, clang, Intel icpx
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• Implementation is based on compiler vector extensions (CVEs): explicit vectors of floating point types

– Supported by all of the gcc, clang and (through clang) Intel icpx compilers

– Powerful but easy to use (no debugging auto-vectorization!), intuitive (they force you to design code for vector types!)

• Routinely build and compare five vectorization levels on Intel CPUs (and similar features on AMD or ARM CPUs) 

C++ vectorization in CUDACPP: overview

none 1xD, 1xF (scalar)

sse4 2xD, 4xF(128-bit xmm registers, “nehalem” SSE4.2 instruction set)

avx2 4xD, 8xF (256-bit ymm registers, “haswell” AVX2 instruction set)

512y 4xD, 8xF (256-bit ymm registers, “skylake-avx512” AVX512 instruction set)

512z 8xD, 16xF (512-bit zmm registers, “skylake-avx512” AVX512 instruction set)

Float: ~x2 faster than double

(x2 larger vector of FP values

in CPU SIMD vector registers)
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ACAT2022

C++ vectorization in CUDACPP: results for gg→t ҧtgg (one core)

Data-parallel component alone (ME calculation):

speedup ~ x8 (double) and x17 (float) over scalar Fortran

We reach the maximum theoretical SIMD speedup for AVX512

Overall: speedup so far ~ x6 (double) and x10 (float) over scalar Fortran 

Amdahl's law limit is for 𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠 (2→4 process) is x20 (Fortran MEs are p=95% of the total)

Intel Gold6148 (Juelich)

One single CPU core

gcc11.2 compiler (no inlining)

p=95%

Float: ~x2 faster than double

(x2 larger vector of FP values

in CPU SIMD vector registers)
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gg→𝒕 ҧ𝒕gg

(float)

gg→𝒕 ҧ𝒕gg

(float)

C++ vectorization in CUDACPP: results for gg→t ҧtgg (many cores)

• Large SIMD speedups are also confirmed when all CPU cores are used
– AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node

• Possibly due to clock slowdown from fully loaded AVX512 processor (to-do for us: further investigate this)

– Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512) 

• NB: this is a multi-process approach (many identical processes running the same benchmarking application)
– These plots were produced using the infrastructure of the HEP-SCORE benchmarking project (next talk by D. Giordano)

– We also have initial results from multi-threading in CUDACPP (using OpenMP), but this is work-in-progress

ACAT2022
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C++ vectorization in CUDACPP: Intel Silver vs Intel Gold CPUs
• Previous slide was for Intel Gold6148, but results with Silver CPUs not as good: compare Silver4216 and Gold6130

• Intel Gold 6130: max achieved double performance is ~x8 from "512z" (512-bit zmm registers, AVX512 instructions)
– There is an advantage using zmm registers on Gold6130 CPU (which has 2 FMA units - like Gold6148) [1,2]

• Intel Silver 4216: max achieved double performance is ~x4 from "512y" (256-bit ymm registers, AVX512 instructions)
– There is no advantage using zmm registers on Silver4216 CPU (which has only 1 FMA unit) [3]

– Note that 512y is still ~10% better than avx2 (uses a few additional instructions in the AVX512 instruction set)

Question: would it be possible to specify the number of FMA units in /cpu/procinfo or other O/S properties?...

Max ~x4

from 512y

Max ~x8

from 512y [1] https://ark.intel.com/content/www/us/en/ark/products/120492/intel-

xeon-gold-6130-processor-22m-cache-2-10-ghz.html

[2] https://ark.intel.com/content/www/us/en/ark/products/120489/intel-

xeon-gold-6148-processor-27-5m-cache-2-40-ghz.html

[3] https://ark.intel.com/content/www/us/en/ark/products/193394/intel-

xeon-silver-4216-processor-22m-cache-2-10-ghz.html

PRELIMINARY!

https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120489/intel-xeon-gold-6148-processor-27-5m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193394/intel-xeon-silver-4216-processor-22m-cache-2-10-ghz.html


A. Valassi – CPU vectorization and GPUs in Madgraph5_aMC@NLO CERN Openlab workshop, 16 March 2023 12

C++ vectorization in CUDACPP: gcc vs clang (or Intel icpx)
• In our default implementation inl0 ("no aggressive inlining"), gcc gives better throughput results than clang or icpx

– The results in the previous slides were based on this gcc+inl0 baseline

• In CUDACPP we also have another implementation inl1 ("with aggressive inlining")
– With gcc, this is worse - but with clang (or icpx), this may give up to a factor 2 or more additional speedups!

• Disadvantage: build times explode (similarly to Link Time Optimization, from which this implementation was inspired)

– (On the to-do list for us, understand this better: profile data pipelining? further analysis at assembly level?)

• Whether for inl0 or inl1, the additional benefits of icpx over clang seem to be very small, if there are any at all
– The benefits of icpx2023 over gcc come mainly from its internal use of clang16? (No benefit over standalone clang14)

PRELIMINARY!

Note: preliminary results from the SYCL 

implementation are compatible with those 

from CUDACPP using the icpx compiler
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(CUDACPP implementations on Nvidia GPUs)
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GPU offload in CUDACPP: example results for gg→t ҧtggg

ACAT2022

p=99.5%

Data-parallel component alone (ME calculation):

speedup ~ x100 (double) and x220 (float) over one-CPU-core scalar Fortran

Overall: speedup so far ~ x60 (double) and x100 (float) over one-CPU-core scalar Fortran 

Amdahl's law limit for 𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠𝐠 (2→5 process) is x200 (Fortran MEs are p=99.5% of the total)

NVidia V100 GPU

Intel Silver 4216 CPU

cuda11.7 + gcc11.2 

Float: ~x2 faster than double

(x2 FP FLOPS in V100 GPU)



A. Valassi – CPU vectorization and GPUs in Madgraph5_aMC@NLO CERN Openlab workshop, 16 March 2023 15

(SYCL implementation on GPUs)

CUDA vs SYCL on Nvidia GPUs

SYCL on Intel GPUs (compiler: Intel dpcpp)
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CUDACPP vs SYCL on NVidia/AMD/Intel GPUs

• Nvidia GPUs: the performances of the SYCL implementation seems ~comparable to direct CUDA for gg→t ҧtgg

– More fine-grained analysis on the next slide, for different physics processes

• Intel and AMD GPUs: the SYCL implementation runs out of the box

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU

Variable GPU-grid size (throughput scan)

(gg_ttgg) 16k

INTEL NVIDIAAMD

Fixed GPU-grid size (throughput plateau)ACAT2022
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CUDACPP vs SYCL on NVidia A100 GPUs

• SYCL and CUDA implementations have ~similar performances but

–SYCL seems better for less complex processes

–CUDA seems better for more complex processes

• These are very recent results, which are still being digested (WIP!)

𝐠𝐠→𝐭 ҧ𝐭

𝐠𝐠→𝐭 ҧ𝐭𝐠

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠𝐠

CUDA < SYCL

CUDA < SYCL

CUDA > SYCL

CUDA > SYCL

PRELIMINARY!
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Summary

• We have implemented efficient data-parallelism for Madgraph5 using CPU SIMD and GPUs
–Our main implementation is based on CUDA and C++, we also have an alternative SYCL implementation

• On Intel Gold6xxx CPUs (2 FMA units), we achieve the full x8/x16 speedup of AVX512 for double/float
–Lower-end Intel CPUs with 1 FMA unit are a factor 2 slower than those with 2 FMA units for AVX512

– Is it possible to read directly the number of FMS units from /proc/cpuinfo or other O/S properties?

• We use compiler vector extensions for C++ vectorization in gcc and clang (and Intel icpx via clang)
–The clang CVEs are also what sycl::vec uses under the hood in our alternative SYCL implementation

• The Intel icpx compiler gives very similar results to clang for C++ vectorization
–Slightly worse than gcc for our baseline, but around a factor 2 better with aggressive inlining

• On NVidia GPUs, our direct CUDA implementation is better than the SYCL one for complex processes
–On Intel and AMD GPUs, the SYCL implementation runs out of the box, unlike the CUDA implementation

– Installing and using SYCL with all relevant plugins (e.g. NVidia) is complex: is it foresee to 'yum install' this?
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BACKUP SLIDES
(mainly from the February 2023 CAF talk: https://indico.cern.ch/event/1207838/)

https://indico.cern.ch/event/1207838/
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C++ vectorization – why choose Compiler Vector Extensions?

• Portable – available in gcc, clang, icpx (from clang) with minimal differences
–Do not require any external libraries or tools (VC, VCL, VecCore, xSIMD, UME::SIMD, or SYCL...)

• Powerful, but easy to use
–No need to debug auto-vectorization when it does not vectorize

–As powerful as intrinsics, but much easier to write (higher-level abstractions) 

• Intuitive – CVEs force you to think in terms of vector types!

• Minor disadvantage – no vector complex type out of the box
–But it was easy to write it in our case (RRRRIIII memory layout) as we only need + -  

–A few extensions for Boolean vector masks were needed, too

• One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype_v*...
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CUDA/C++: a single source code approach (so far...)

• The main difference between our CPU (C++) and GPU (CUDA) implementations is the following

–on the CPU, all computations and all memory access takes place on the host

–on the GPU, it is necessary to distinguish computations and memory accesses on the host and on the device 

• Within the GPU code, the amount of code that is specific to NVidia/CUDA is minimal

–Memory allocations (cudaMalloc), encapsulated within host/device buffer classes

–Kernel executions (<<<...>>>), encapsulated within very few specific classes

–A few specific types or features (thrust::complex, curand, cuBLAS), also encapsulated in specific classes

• The rest of the code is (at least formally – see example later) ~identical for C++ and CUDA!

–There are almost more differences between scalar and vector C++ code...

• Therefore, we presently use a single source code approach for CUDA/C++ (with #ifdef __CUDA__)

–We might review this later on – as it sometimes imposes slightly unnatural choices, and may hinder readability

–But so far it has allowed us to make rapid progress for both CUDA and C++ in parallel!
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Amdahl’s law

• The matrix element calculation is now the bottleneck (e.g. >95% for gg→t ҧtgg) in Fortran Madgraph

–But the remaining <5% may fast become the bottleneck if you accelerate the matrix element too much!

• Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)

– If the MadEvent overhead takes 5%, the maximum speedup is only 20 even if your GPU speedup s is 1000!

https://en.wikipedia.org/wiki/Amdahl%27s_law

https://en.wikipedia.org/wiki/Amdahl%27s_law
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MG5aMC: old and new architecture designs

1. STANDALONE

(TOY APPLICATIONS)

MULTI-EVENT API

2. NEW MADEVENT

(GOAL: LHC PROD)

MULTI-EVENT API

OLD MADEVENT

(NOW: LHC PROD)

SINGLE-EVENT API

First we developed 

the new ME engines 

in standalone applications

(Amdahl...)

SCALAR:

NEW 

BOTTLENECK?

PARALLEL:

MUCH FASTER!

MATRIX ELEMENT: 

CPU BOTTLENECK 

IN OLD MADEVENT

MATRIX ELEMENTS

CUDA/C++ or PFs:

cuRAND

CUDA/C++ or PFs:

RAMBO

CUDA/C++ or PFs:

MEKERNELS

MOMENTA

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

CUDA/C++ or PFs:

MEKERNELS

MOMENTA

MATRIX ELEMENTS

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

FORTRAN:

MATRIX1

MOMENTA

MATRIX ELEMENTS

Then we modified the existing 

all-Fortran MadEvent 

into a multi-event framework 

and we injected the new MEs into it
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What is a MC ME generator? A simplified computational anatomy

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MONTE CARLO 
INTEGRATION

MONTE CARLO 
UNWEIGHTING

UNWEIGHTED EVENTS 
{EVT_i , W_i=1}

WEIGHTED EVENTS 
{EVT_i , W_i}

CROSS-SECTIONS etc...
(AVG W_i, MAX W_i)

PHASE SPACE
SAMPLING 

OPTIMISATION

MC MATRIX 
ELEMENT 

GENERATOR 
(e.g. MG5aMC)

+ optional event cuts

HADRONISATION
AND DECAY

PARTON 
SHOWERS

PARTICLE 
FILTERING

DETECTOR 
SIMULATION

SHOWERING AND 
HADRONIZATION 

GENERATORS
(e.g. PYTHIA)

(GEANT4)

For each event:

1.

Output: random numbers

2. 

Input: random numbers

Output: particle 4-momenta

3. 

Input: particle 4-momenta

Output: Matrix Element (ME)

CPU BOTTLENECK

(NB: “Matrix Element” is an 

element of the scattering matrix... 

not a linear algebra concept!)

Monte Carlo sampling: randomly generate and process

MANY different events (“phase space points”)

This can be parallelized (SIMT/SIMD and multithreading) 

(FOR LATER!) Physics output: cross-section and LHE event file
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MG5aMC data parallelism: design for lockstep processing!

• In MC generators, the same function is used to compute the Matrix Element for many different events

–ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)

–Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads) 

Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data) 

Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU 

SIMT
CPU 

SIMD

S
e
e
 t
h
e
 N

V
id

ia
 V

o
lt
a
 w

h
it
e
p
a
p
e
r

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Lockstep? MC generators (lucky!) vs MC detector simulation (unlucky)

• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

• From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

ME event generators* 

(before ME calculation):

- MC integration 

(cross sections)

- MC generation 

(event samples)

*NB: the CPU-intensive ME calculation comes 

before PS, fragmentation, detector simulation 

SAME CALCULATION

ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing

Good for SIMT/SIMD

MC DECISIONS

Detector simulation (Geant4)

- Particle/matter interaction 

(when? how?)

- Particle decays (when?)

Event generators*

(after ME calculation):

- MC unweighting (keep/reject) 

Parton showers (PS)

- Fragmentation and decays

DIFFERENT CALCULATIONS

ON DIFFERENT DATA!

DECISION

INPUT

OUTPUT

Stochastic branching

Bad for SIMT/SIMD

Data parallelism (NB: MULTI-EVENT API !)
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Memory layouts – AOS, SOA, AOSOA

We have experimented with three possible memory layouts for momenta 

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)

We are using AOSOA’s as the current default – but this is still largely configurable

• For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
–We use an AOSOA with Nepp equal to the SIMD vector size NeppV – and an aligned malloc is needed too!

–For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

• For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
–We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)

–For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

• Coding for SIMD is more complex than coding for GPUs...

MATRIX ELEMENTS

CUDA/C++:

MEKERNELS

MOMENTA

Matrix element calculation (simplified example)
– inputs[4*Npar*Nevt] = (x,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)

– outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

Example: Npar=6 particles for the 2→4 process gg→t ҧtgg
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Monitoring GPU memory access – NSight Compute

• Explicitly collect two relevant profiler metrics in NSight Compute

– “requests” : l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum

– “sectors” (i.e. transactions, network roundtrips): l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum

– this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

• Profile AOS against the AOSOA baseline

–same number of “requests” in AOS and AOSOA

–AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)

– in other words: AOSOA provides coalesced memory access, AOS does not

– for what it is worth (not much!), the actual slowdown in this e+e−→+− example was only 7% however

https://github.com/madgraph5/madgraph4gpu/issues/16
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In practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity ) compute partial amplitudes Jf for each color ordering permutation f (sum diagrams relevant to f)

2. (for each helicity ) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

3. sum over helicities [Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 128 helicities (before and after filtering)]

Each step computes many events 𝒑 in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.

Inside the ME calculation: Feynman diagrams, colors, helicities
Given the momenta Ԧ𝑝 of initial+final partons in one specific event

Sum over all helicity combinations  of initial+final partons

Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given  and c

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 1240 Feynman diagrams (using helicity amplitudes)

This takes ~40% of the CPU time for this process

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 120 color ordering permutations, 120x120 matrix

This takes ~60% of the CPU time for this process
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Helicity amplitudes – same code in CUDA and in vectorized C++

• Old slide! The new code is 

different, the idea is the same!

• Formally the same code for 

CUDA and scalar/vector C++

–hide type behind a typedef

–add a few missing operators

SIMD in CUDA/C++ uses 

compiler vector extensions!

Flexible design: being reused            

also for vectorized SYCL!

Automatically 

generated!
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Monitoring lockstep – GPU NSight compute, CPU disassemble

• GPU: explicitly collect one profiler metric in NSight Compute

– “branch efficiency” : sm__sass_average_branch_targets_threads_uniform.pct

–old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency, 

alternative with minor forced divergence has 96% efficiency (and is 20% slower)

• CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)

–but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

# Symbols in .o SSE4.2 

(xmm)

AVX2 

(ymm)

AVX512

(ymm)

AVX512

(zmm)Build type

Scalar 4534 0 0 0

SSE4.2 12916 0 0 0

AVX2 0 10630 0 0

256-bit AVX512 0 10366 12 0

512-bit AVX512 0 1267 60 99104
a

9
0

e
c
2
gg
→
t
ҧ tg
g

ACAT2022

https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt
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Code generation: how did we bootstrap the project?
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Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates

- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)

- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code

(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL

(since end 2021)

OLD MODEL

(2020- early 2021)

(1) MG5AMC Python framework, Fortran templates: 

“upstream” https://github.com/mg5amcnlo/mg5amcnlo

(2) CUDACPP plugin, post-generation patches,

generated CUDA/C++ physics processes:

our https://github.com/madgraph5/madgraph4gpu

WIP to-do before a release: 

full port from madgraph4gpu 

to mg5amcnlo (remove post-

generation Fortran patches, 

add CUDACPP upstream)

... and beyond

https://github.com/mg5amcnlo/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu
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Why focus on complex processes? Compute >> memory!

• We are lucky: the more 

complex the physics process, 

the less relevant is the cost of 

GPU-CPU data copies!

–Similarly (later): the more 

complex the process, the less 

relevant is the overhead from 

scalar Fortran in madevent!

–And the fewer events in flight 

needed to fill the GPU...

• In this talk I mainly give 

performance numbers for 

complex processes like 

gg→t ҧtgg or gg→t ҧtggg

e+e-→+-

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠
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Filling the GPU – minimum number of threads (events in flight)

• We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

• But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
–Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event  across many kernels)?

–Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?

–Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?

https://doi.org/10.1051/epjconf/202125103045 (vCHEP 2021) 

https://doi.org/10.1051/epjconf/202125103045
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All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

• Helicity filtering – at initialization time, compute the allowed combinations of particle helicities

–This is computed in CUDA/C++ using the same criteria as in Fortran 

• “Multi-channel” – single-diagram enhancement of ME output

–This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

• Event-by-event running QCD coupling constants s(Q
2)

–The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event 

• Event-by-event choice of helicity and color in LHE files

–Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

–NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)

• We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++

https://doi.org/10.1088/1126-6708/2003/02/027
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The road to an alpha release (Q1-Q2 2023)

• Complete the back-port of code generation from madgraph4gpu to mg5amcnlo upstream
– Including extra cross-checks that the LHE color IDs are those required for parton showers

• Make the CUDA/C++ madevent executable consistent with the Madgraph “launch” infrastructure
–Modify the names and input parameters of the madevent executable

–Ensure consistency in the handling of physics parameter card files

–Ensure consistency of packaging and builds with the “launch” infrastructure

–Provide and document user hooks for new configurable options (SIMD mode, GPU vector size...)

–Tune some reasonable defaults for out-of-the-box SIMD modes and GPU grid sizes

–Test that a Madgraph “launch” works out-of-the-box for one of our current processes like ggttgg

• Test and fix any bugs in pp collisions, including pdf integration
– Iterate on a few other physics processes, e.g. including Susy

• Stay tuned! ☺
–We will be happy to help your experiment in the integration!

–NB This will use a new Fortran version too (multi-event API), need statistical validation...
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CUDACPP vs. Portability Frameworks – recap

• CUDAPP (our initial implementation) is where we add new features first

• The SYCL implementation of MG5aMC is now almost at the same level, the KOKKOS one somewhat behind

• The ALPAKA implementation of MG5aMC is no longer maintained

Backend
ME code 

generation

Standalone 

application

Actively 

maintained

MadEvent 

application

Latest dev 

code base

CUDACPP ✓ ✓ ✓ ✓ ✓

SYCL ✓ ✓ ✓ ✓ ~ ✓

KOKKOS ✓ ✓ ~ ✓ WIP WIP

ALPAKA

(CUPLA)
✓ ✓   
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Some ideas for heterogeneous processing

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

• Blue curve: one single CPU process using the GPU
– For gg→𝑡 ҧ𝑡gg, you need at least ~16k events to reach the throughput plateau

• Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
– Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU

– The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced 

– (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Throughput variation as a function of 

GPU grid size (#blocks * #threads)

This is the number of events 

processed in parallel in one cycle

Nvidia V100 GPU

Silver 4216 4-core CPU
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Lockstep beyond event-level parallelism

• Efficient data parallelism (lockstep processing) requires the same function computed for different data
–This is true in MG5AMC at the event level (different events i.e. different phase space points)

–But it is also true at the sub-event level (different helicities within the same event)

• We are evaluating the move to a different data parallelism strategy on GPUs
–Currently: one event (sum over all helicities) per GPU thread

– In the future: one helicity of one event per GPU thread?

• Advantages:
–You can fill the GPU with much fewer “events in flight” – more balanced sampling/integration in MadEvent

–This is a prerequisite for moving the color matrix to externally-launched cuBLAS and tensor cores

–This is also a prerequisite if we want to evaluate much smaller kernels
• From all Feynman diagrams in one kernel to one Feynman diagram per kernel?

• Which might decrease register pressure and increase kernel occupancy, but would require more global memory access
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NLO, loops

• So far we have only worked on LO QCD processes!

• NLO QCD processes are more computationally intensive

–They have more Feynman diagrams

–But especially they have loop diagrams!

–And, a matching procedure (MC@NLO) must be applied

• We should be able to compute Born and Real emission contributions in our vectorized C++ and CUDA

–We should also be able to handle NLO matching using the current MadEvent based infrastructure

–The main challenge will be understanding the computational impact of loops (Amdahl)? 

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

Marco Zaro – https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015

B, V, R: matrix elements

MC: parton shower

S and H events: two separate sets of events (different matrix elements)

Integral = S+H is positive – but individual events can have negative weights 

MC@NLO: https://doi.org/10.1088/1126-6708/2002/06/029

Matching NLO QCD and parton showers (avoid double counting)

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
https://doi.org/10.1088/1126-6708/2002/06/029
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