
1

OneAPI for LHCb High Level Trigger

01.07.2022 – 31.12.2022

Apostolos Karvelas

Supervisors: Niko Neufeld & Daniel Hugo Campora Perez

LHCb ALLEN

2

Allen is a fully GPU-based implementation of

the first level trigger.

It has the capability to handle 40 Tbit/s of data in

real-time and can execute a broad range of

pattern recognition operations.

3

The Allen framework is a modular, scalable and

flexible framework for LHCb physics reconstruction

on accelerators with:

• Multi-threaded, pipelined, configurable framework.

• Multi-event scheduler, event batches support.

• Custom memory manager, flexible datatypes.

• Built-in validation. Generation of graphs with ROOT.

LHCb ALLEN

4

Allen has 89 kernel functions and more

than 50000 lines of code.

500 of those lines produce the majority

of the CUDA to SYCL migration.

LHCb ALLEN

Allen compiles natively in:

• CUDA

• HIP

• CPU

• SYCL

5

oneAPI

•Open, cross-industry framework.

•Provides a unified and standards-based programming

model.

•Tools, libraries, and APIs.

oneAPI

6

BenefitsSYCL & oneAPI

•oneAPI includes support for SYCL.

•High performance, productivity, and portability.

•Able to run on various hardware architectures.

7

SYCL Implementation

There is a complete SYCL implementation.

The entirety of Allen has been migrated:

• All sequences are operational.

• Yielding similar result.

• Up-to-date and supports the latest version.

8

Achievements

Key technical aspects that facilitated the migration process:

• Library types and functions not yet supported by SYCL has been developed.

• 3-dimensional kernel invocation has been developed, similar to the one found in CUDA.

• A shared memory model has been created, mimicking the functionality of CUDA's shared

memory system.

• Warp-Level Primitives have been developed specifically for SYCL.

9

Functions

Integer, casting and half precision functions.

• Complete C++ code from scratch.

• Combination of C++ code and already implemented SYCL functions.

10

Data types and structures

Data types: dim3 and float3

• Easily migrate CUDA functions

Data structures: span

• Lightweight contiguous sequence of values.

• Non-owning type.

11

Kernel Invocation

Kernel function invocation: • Queue in FIFO order • Running the same kernel function multiple times in

parallel using 3-dimensional nd_range.

12

Device Shared Memory

• A buffer is generated in the device memory, which can be accessed by all work-items in the nd_range kernel.

• Dividing the buffer and assigning each section to every work-item in the kernel, creating CUDA __shared

array within the kernel.

define SHARED(_name, _size, _span) \
decltype(_span)::value_type* _name = _span.data() + \
_size * (parameters.config.blockIdx<2>() * parameters.config.gridDim<1>() * parameters.config.gridDim<0>() + \
parameters.config.blockIdx<1>() * parameters.config.gridDim<0>() + parameters.config.blockIdx<0>());

13

Warps & Sub-groups

Most of the warp-level primitives and atomics of CUDA are implemented in SYCL.

14

Results

Maximum throughout: 8820 events/s

• Memory bandwidth limitations.

• Thread contention.

Plateau could be due to:

15

• Benchmarking Allen on FPGAs.

• Fine-tuning for improved efficiency results.

• Performing throughput optimizations

targeting Intel’s GPUs.

What’s Next

16

https://home.cern

https://home.cern/

	Διαφάνεια 1
	Διαφάνεια 2
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11
	Διαφάνεια 12
	Διαφάνεια 13
	Διαφάνεια 14
	Διαφάνεια 15
	Διαφάνεια 16

