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RNTuple Goals and Overview



Reminder: HENP Event Data I/0O

Why invest in tailor-made 1/0 sub system (TTree / RNTuple)
= Capable of storing the HENP event data model: nested, inter-dependent collections of data
points

= Performance-tuned for HENP analysis workflow (columnar binary layout, custom compression,
etc.)

= Automatic schema generation and evolution for C++ (via cling) and Python (via cling + PyROQT)
* Integration with federated data management tools (XRootD, etc.)

= Long-term maintenance and support
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RNTuple Goals

= Less disk and CPU usage for same data content
= 25% smaller files, x2-5 better single-core performance
= 10GB/s per box and 1GB/s per core sustained end-to-end throughput (compressed data to
histograms)
= Native support for object stores (targeting HPC)
* DAOS: collaboration between CERN, Intel, and HPE
= Experimental support for S3, ...

= | 0SSy compression

= Systematic use of exceptions to prevent silent I/0O errors

Getting ready for a new hardware landscape: architectural heterogeneity, parallelism on all
levels, blurring between device classes (e.g. active storage, NV-DIMMs)
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RNTuple State of Affairs: Throughput and Size
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RNTuple On-disk File Format

struct Event {

int fId;
vector<Particle> fPtcls; Page Group
b
struct Particle { D]]]]ﬂ]]]]v MMJMLLLUM
; — B8Y o P \~~__\_,: ________ = }—{
vector<int> fIdsheader Page Page List Footer
b

Cluster

= Page: Array of values of a fundamental type (typically compressed). Size in the ~ tens of KiB
= Cluster: Comprises all pages containing data for a specific row range, e.g. 1-1000
= Page group: All pages that contain data for the same column in a given cluster

= Header / Page List / Footer: Information about the schema, cluster summaries, and location of
pages
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Storing RNTuple data in DAOS




Why DAOS?

Issues with traditional storage stack

Designed for spinning disks (few IOPS) and not ideal for NVMe devices

POSIX I/0 (strong consistency) limits parallel filesystem scalability

Fault-tolerant object store optimized for high bandwidth, low latency, and high IOPS.
Foundation of the Intel exascale storage stack

44% of the top 25 systems in 10500" based on DAOS, including ANL Aurora

Acquired experience can be reused in implementing support for other object stores, e.g. S3.

DAOS provides a compatibility layer, incl. POSIX filesystem (via 1ibioil or dfuse), however...
NOT ideal!

'https://io0500.0rg/
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https://io500.org/

DAOS 101

DAOS objects '
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= Object: essentially a Key-Value store with locality, as in

- The key is split into dkey (distribution key) and akey (attribute key), and...
- the dkey impacts data co-locality: same distribution key maps to same target.

= Object class: determines redundancy type, i.e. replication / erasure code
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What is new in 2023?

1.

Improved RNTuple «+ DAOS mapping preserving page co-locality, tuned for typical HENP
analysis patterns:

cluster — OID,  column s dkey, page > akey

. Coalesced R/W requests by {0ID, dkey} to minimize /0 calls and exploit target

parallelization

. Vector writes: per-cluster data buffering; issue coalesced, parallel writes

. Multiple 10Vs per akey: allows for transferring a page range in a single operation, targeting

high throughput independently of native page size

| Page1 Page2 Page n

o

Array of 10Vs for
a single akey

la]m]@]~ - - [fil]

. And more: better queue management, multiple ntuples per container...
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RNTupleReader: file vs. DAOS

Compromise: only change consists in replacing the file path

auto ntuple = RNTupleReader: :Open("DecayTree",
"/path/to/file/B2HHH~zstd.ntuple");

to a daos:// URI

auto ntuple = RNTupleReader::Open("DecayTree",
"daos://my-pool/my-container");
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Evaluation




Test environment

= HPE? Delphi: 2 servers, 6 client nodes. Mellanox InfiniBand.

Test case

= Steps: (a) move data into DAOS, and
(b) run analysis using imported data (single-process, single-node).

= Dataset: LHCb OpenData B2HHH: 8.5M events, 26 branches
replicated x10 (total size of 15GB).

= with/out compression (zstd) and leveraging different RNTuple-to-DAOS mappings

2Access to the hardware for the experimental evaluation was kindly provided by Hewlett-Packard Enterprise.
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http://opendata.cern.ch/record/4900

Read/Write Throughput vs. Page Size

Plot (1.b): read throughput (no compr.)

7 [ .|
6 [ .|
5 [ .|
L4
[aa]
(]
3
2
1
oo —o- — — -
0 11 Il Il Il O 1| Il Il
64 256 1,024 64 256 1,024
128 512 2,048 128 512 2,048
Page size (kB) Page size (kB)
_ New-Mapping, 1MiB chunk per akey _ New-Mapping, 1MiB chunk per akey
—— New-Mapping, single page per akey —— New-Mapping, single page per akey
—A&—  Llegacy-Mapping, single page per akey —A&—  legacy-Mapping, single page per akey
—@— Original proof-of-concept (Legacy-Mapping) —@— Original proof-of-concept (Legacy-Mapping) s




State of Affairs: Beginning vs. End of 2022
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Conclusion




Conclusion

= Many new features made it into RNTuple last year: support for new C++ types, custom
collections, custom 1/0 rules, etc.

= Matured DAOS backend with major performance improvements, becoming ready for real-world
analyses

= RNTuple is scheduled to become production grade in 2024°

Next steps
= Leverage single-node DAOS improvements in distributed analysis with ROOT’s DistRDF

= Roll out Amazon S3 backend (coming soon)

3We appreciate the first experiments implementing RNTuple writers in their workflows, providing feedback on features and
performance.
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Thanks!

Thanks!



Backup



DistRDF + RNTuple/DAOS Caching: HPE benchmark (1)

= Benchmark based on LHCB opendata B2HHH

800 GB dataset cache on DAOS

= Read and process with distributed RDataFrame + RNTuple DAOS backend

= NOTE: the benchmark dates back to Q4 2021; re-running this again is still WIP!


http://opendata.cern.ch/record/4902

DistRDF + RNTuple/DAOS Caching: HPE benchmark (2)
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= First working example of distributed
RDataFrame reading RNTuple data!
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20 = DAOS backend just works, even when issuing

read requests from multiple nodes

= 70% of the nominal bandwidth (48 GB/s) of
the cluster achieved
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