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RNTuple Goals and Overview



Reminder: HENP Event Data I/O

Why invest in tailor-made I/O sub system (TTree / RNTuple)

Capable of storing the HENP event data model: nested, inter-dependent collections of data
points

Performance-tuned for HENP analysis workflow (columnar binary layout, custom compression,
etc.)

Automatic schema generation and evolution for C++ (via cling) and Python (via cling + PyROOT)

Integration with federated data management tools (XRootD, etc.)

Long-term maintenance and support
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RNTuple Goals

Less disk and CPU usage for same data content
25% smaller files, ×2-5 better single-core performance
10GB/s per box and 1GB/s per core sustained end-to-end throughput (compressed data to
histograms)

Native support for object stores (targeting HPC)
DAOS: collaboration between CERN, Intel, and HPE
Experimental support for S3, …

Lossy compression

Systematic use of exceptions to prevent silent I/O errors

Getting ready for a new hardware landscape: architectural heterogeneity, parallelism on all
levels, blurring between device classes (e.g. active storage, NV-DIMMs)
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RNTuple State of Affairs: Throughput and Size
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RNTuple On-disk File Format

… …

Header
Page

Cluster

FooterPage List

Page Group

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Page: Array of values of a fundamental type (typically compressed). Size in the ≈ tens of KiB
Cluster: Comprises all pages containing data for a specific row range, e.g. 1–1000
Page group: All pages that contain data for the same column in a given cluster

Header / Page List / Footer: Information about the schema, cluster summaries, and location of
pages
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Storing RNTuple data in DAOS



Why DAOS?

Issues with traditional storage stack

Designed for spinning disks (few IOPS) and not ideal for NVMe devices

POSIX I/O (strong consistency) limits parallel filesystem scalability

Fault-tolerant object store optimized for high bandwidth, low latency, and high IOPS.
Foundation of the Intel exascale storage stack

44% of the top 25 systems in IO5001 based on DAOS, including ANL Aurora

Acquired experience can be reused in implementing support for other object stores, e.g. S3.

DAOS provides a compatibility layer, incl. POSIX filesystem (via libioil or dfuse), however…
NOT ideal!

1https://io500.org/
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DAOS 101

DAOS pool DAOS container dkey akey value
dkey1 … …

dkey akey value
dkey1 … …
dkey2 … …
dkey1 … …

DAOS objects

Target 1

Target 2

...

Target n

Object: essentially a Key–Value store with locality, as in

- The key is split into dkey (distribution key) and akey (attribute key), and…
- the dkey impacts data co-locality: same distribution key maps to same target.

Object class: determines redundancy type, i.e. replication / erasure code
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What is new in 2023?

1. Improved RNTuple↔ DAOS mapping preserving page co-locality, tuned for typical HENP
analysis patterns:

cluster 7→ OID, column 7→ dkey, page 7→ akey

2. Coalesced R/W requests by {OID, dkey} to minimize I/O calls and exploit target
parallelization

3. Vector writes: per-cluster data buffering; issue coalesced, parallel writes

4. Multiple IOVs per akey: allows for transferring a page range in a single operation, targeting
high throughput independently of native page size

Page 1 Page 2 Page n…

[0] [1] [2] … … … [i]Array of IOVs for
a single akey

5. And more: better queue management, multiple ntuples per container…
8/13



RNTupleReader: file vs. DAOS

Compromise: only change consists in replacing the file path

auto ntuple = RNTupleReader::Open("DecayTree",
"/path/to/file/B2HHH~zstd.ntuple");

to a daos:// URI

auto ntuple = RNTupleReader::Open("DecayTree",
"daos://my-pool/my-container");
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Evaluation



Evaluation

Test environment

HPE2 Delphi: 2 servers, 6 client nodes. Mellanox InfiniBand.

Test case

Steps: (a) move data into DAOS, and
(b) run analysis using imported data (single-process, single-node).

Dataset: LHCb OpenData B2HHH: 8.5M events, 26 branches
replicated ×10 (total size of 15 GB).

with/out compression (zstd) and leveraging different RNTuple-to-DAOS mappings

2Access to the hardware for the experimental evaluation was kindly provided by Hewlett-Packard Enterprise.

10/13

http://opendata.cern.ch/record/4900


Read/Write Throughput vs. Page Size
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State of Affairs: Beginning vs. End of 2022
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Conclusion



Conclusion

Many new features made it into RNTuple last year: support for new C++ types, custom
collections, custom I/O rules, etc.

Matured DAOS backend with major performance improvements, becoming ready for real-world
analyses

RNTuple is scheduled to become production grade in 20243

Next steps

Leverage single-node DAOS improvements in distributed analysis with ROOT’s DistRDF

Roll out Amazon S3 backend (coming soon)

3We appreciate the first experiments implementing RNTuple writers in their workflows, providing feedback on features and
performance.
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Thanks!

Thanks!
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Backup



DistRDF + RNTuple/DAOS Caching: HPE benchmark (1)

Benchmark based on LHCB opendata B2HHH

800GB dataset cache on DAOS

Read and process with distributed RDataFrame + RNTuple DAOS backend

NOTE: the benchmark dates back to Q4 2021; re-running this again is still WIP!

http://opendata.cern.ch/record/4902


DistRDF + RNTuple/DAOS Caching: HPE benchmark (2)

processing throughput

First working example of distributed
RDataFrame reading RNTuple data!

DAOS backend just works, even when issuing
read requests from multiple nodes

70% of the nominal bandwidth (48GB/s) of
the cluster achieved
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