Mapping ROOT RNTuple I/0 data structures to DAOS objects

Javier Lopez-Gomez *
Giovanna Lazzari Miotto **
Vincenzo Eduardo Padulano

CERN openlab Technical Workshop, 2023-03-16

* CERN (CH)
** Federal University of Rio Grande do Sul (BR)
f valencia Polytechnic University (ES)

-/ ROOT

Data Analysis Framework

RNTuple Goals and Overview
Storing RNTuple data in DAOS
Evaluation

Conclusion

1/13

RNTuple Goals and Overview

Reminder: HENP Event Data I/0O

Why invest in tailor-made 1/0 sub system (TTree / RNTuple)
= Capable of storing the HENP event data model: nested, inter-dependent collections of data
points

= Performance-tuned for HENP analysis workflow (columnar binary layout, custom compression,
etc.)

= Automatic schema generation and evolution for C++ (via cling) and Python (via cling + PyROQT)
* Integration with federated data management tools (XRootD, etc.)

= Long-term maintenance and support

2/13

RNTuple Goals

= Less disk and CPU usage for same data content
= 25% smaller files, x2-5 better single-core performance
= 10GB/s per box and 1GB/s per core sustained end-to-end throughput (compressed data to
histograms)
= Native support for object stores (targeting HPC)
* DAOS: collaboration between CERN, Intel, and HPE
= Experimental support for S3, ...

= | 0SSy compression

= Systematic use of exceptions to prevent silent I/0O errors

Getting ready for a new hardware landscape: architectural heterogeneity, parallelism on all
levels, blurring between device classes (e.g. active storage, NV-DIMMs)

3/13

RNTuple State of Affairs: Throughput and Size

3,000
2
o
= 2,000
Qo
£
o
£ 1,000
5

£

)

= u

a

2 [|

S B Hor
2

E

[l HDF5/column-wise

Tree

RNTuple
Parquet
5/r0

e

HDD SsD CephFs HDD warm cache
(a): LHCb B2HHH (10/26 branches; compressed)

(b): CMS Higgs4Leptons (10/84 branches; compressed)

1,000

500

uncomp MB/s

=i

woD <SP ceph®™

e
(i €3
0 Wa!

S
cep“?w arm @°
s\

TTree [l RNTuple [l Parquet [l HOF5/row-wise [l HDF5/column-wise

TTree

RNTuple

Parquet

HDFS/row
HDF5/col

M Read bytes | |
W Filesize

4/13

RNTuple On-disk File Format

struct Event {

int fId;
vector<Particle> fPtcls; Page Group
b
struct Particle { D]]]]ﬂ]]]]v MMJMLLLUM
; — B8Y o P \~~___,: ________ = }—{
vector<int> fIdsheader Page Page List Footer
b

Cluster

= Page: Array of values of a fundamental type (typically compressed). Size in the ~ tens of KiB
= Cluster: Comprises all pages containing data for a specific row range, e.g. 1-1000
= Page group: All pages that contain data for the same column in a given cluster

= Header / Page List / Footer: Information about the schema, cluster summaries, and location of
pages

5/13

Storing RNTuple data in DAOS

Why DAOS?

Issues with traditional storage stack

Designed for spinning disks (few IOPS) and not ideal for NVMe devices

POSIX I/0 (strong consistency) limits parallel filesystem scalability

Fault-tolerant object store optimized for high bandwidth, low latency, and high IOPS.
Foundation of the Intel exascale storage stack

44% of the top 25 systems in 10500" based on DAOS, including ANL Aurora

Acquired experience can be reused in implementing support for other object stores, e.g. S3.

DAOS provides a compatibility layer, incl. POSIX filesystem (via 1ibioil or dfuse), however...
NOT ideal!

'https://io0500.0rg/

6/13

https://io500.org/

DAOS 101

DAOS objects '

DAOS pool i ——-- ~—
°P ’_[3/'}95 container __.----=""{[dkey [akey [value | oy Target n
@ - &N | dkeyl | .. [- J
) :
-~ =~ N
() ‘~~~““_-— J. ‘~~_;‘_;‘_ A
dkey | akey [value P Target 2
dkeyl | ..] PN,
X, dkey2 | ..] D)
dkeyl | .. . BREEH Target 1
~

= Object: essentially a Key-Value store with locality, as in

- The key is split into dkey (distribution key) and akey (attribute key), and...
- the dkey impacts data co-locality: same distribution key maps to same target.

= Object class: determines redundancy type, i.e. replication / erasure code

7/13

What is new in 2023?

1.

Improved RNTuple «+ DAOS mapping preserving page co-locality, tuned for typical HENP
analysis patterns:

cluster — OID, column s dkey, page > akey

. Coalesced R/W requests by {0ID, dkey} to minimize /0 calls and exploit target

parallelization

. Vector writes: per-cluster data buffering; issue coalesced, parallel writes

. Multiple 10Vs per akey: allows for transferring a page range in a single operation, targeting

high throughput independently of native page size

| Page1 Page2 Page n

o

Array of 10Vs for
a single akey

la]m]@]~ - - [fil]

. And more: better queue management, multiple ntuples per container...

8/13

RNTupleReader: file vs. DAOS

Compromise: only change consists in replacing the file path

auto ntuple = RNTupleReader: :Open("DecayTree",
"/path/to/file/B2HHH~zstd.ntuple");

to a daos:// URI

auto ntuple = RNTupleReader::Open("DecayTree",
"daos://my-pool/my-container");

9/13

Evaluation

Test environment

= HPE? Delphi: 2 servers, 6 client nodes. Mellanox InfiniBand.

Test case

= Steps: (a) move data into DAOS, and
(b) run analysis using imported data (single-process, single-node).

= Dataset: LHCb OpenData B2HHH: 8.5M events, 26 branches
replicated x10 (total size of 15GB).

= with/out compression (zstd) and leveraging different RNTuple-to-DAOS mappings

2Access to the hardware for the experimental evaluation was kindly provided by Hewlett-Packard Enterprise.

10/13

http://opendata.cern.ch/record/4900

Read/Write Throughput vs. Page Size

Plot (1.b): read throughput (no compr.)

7 [.|
6 [.|
5 [.|
L4
[aa]
(]
3
2
1
oo —o- — — -
0 11 Il Il Il O 1| Il Il
64 256 1,024 64 256 1,024
128 512 2,048 128 512 2,048
Page size (kB) Page size (kB)
_ New-Mapping, 1MiB chunk per akey _ New-Mapping, 1MiB chunk per akey
—— New-Mapping, single page per akey —— New-Mapping, single page per akey
—A&— Llegacy-Mapping, single page per akey —A&— legacy-Mapping, single page per akey
—@— Original proof-of-concept (Legacy-Mapping) —@— Original proof-of-concept (Legacy-Mapping) s

State of Affairs: Beginning vs. End of 2022

GB/s

Plot (2.a): LHCb B2HHH (no compr.)

Write Read

GB/s

Plot (2.b): LHCb B2HHH (zstd compr.)

Write Read

B moriginal implementation (64 kB pages)

B B Best result (1MiB chunks)

12/13

Conclusion

Conclusion

= Many new features made it into RNTuple last year: support for new C++ types, custom
collections, custom 1/0 rules, etc.

= Matured DAOS backend with major performance improvements, becoming ready for real-world
analyses

= RNTuple is scheduled to become production grade in 2024°

Next steps
= Leverage single-node DAOS improvements in distributed analysis with ROOT’s DistRDF

= Roll out Amazon S3 backend (coming soon)

3We appreciate the first experiments implementing RNTuple writers in their workflows, providing feedback on features and
performance.

13/13

Thanks!

Thanks!

Backup

DistRDF + RNTuple/DAOS Caching: HPE benchmark (1)

= Benchmark based on LHCB opendata B2HHH

800 GB dataset cache on DAOS

= Read and process with distributed RDataFrame + RNTuple DAOS backend

= NOTE: the benchmark dates back to Q4 2021; re-running this again is still WIP!

http://opendata.cern.ch/record/4902

DistRDF + RNTuple/DAOS Caching: HPE benchmark (2)

processing throughput

N
o

w
a

W
o

Processing throughput [GB/s]

= First working example of distributed
RDataFrame reading RNTuple data!

N
a

20 = DAOS backend just works, even when issuing

read requests from multiple nodes

= 70% of the nominal bandwidth (48 GB/s) of
the cluster achieved

6
Nodes

	RNTuple Goals and Overview
	Storing RNTuple data in DAOS
	Evaluation
	Conclusion
	Appendix
	Backup

