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Introduction



CoE RAISE

➢ CoE RAISE [1]: Center of Excellence for Research on AI- and 
Simulation-based Engineering at Exascale

➢ Develop novel, scalable Artificial Intelligence technologies
➢ Connect

➢ hardware infrastructure
➢ software infrastructure
➢ compute-driven use cases
➢ and data-driven use cases

➢ CERN (Dr. M. Girone) leads WP4: Data-Driven Use-Cases 
towards Exascale [2]

➢ Including Task 4.1 (E. Wulff): Event reconstruction and 
classification at the CERN HL-LHC, which we’ll see more details 
on later

➢ UOI (Prof. M. Riedel) leads WP2: AI- and HPC-Cross 
Methods at Exascale [3]

➢ Provides expert support on HPC and AI methods to use cases in 
WP4
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CoE RAISE Partners

[1] https://www.coe-raise.eu [2] https://www.coe-raise.eu/wp4 [3] https://www.coe-raise.eu/wp2

https://www.coe-raise.eu/
https://www.coe-raise.eu/wp4
https://www.coe-raise.eu/wp2
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CoE RAISE: Modularity of Next-Generation HPC Systems 

Simulation 
workflow

➢ Find the most suitable hardware for a specific task

➢ Enable intertwined AI- and HPC-workflows

➢ EuroHPC’s roadmap includes integrating Quantum 
Computers and Quantum simulators in already existing 
supercomputer centers [1]

Complex taskComplex hardware
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➢ Representative use-cases from research and industry/SMEs, which have a 
strong focus on data-driven technologies, i.e., analyzing data-rich 
descriptions of physical phenomena

➢ Event reconstruction and classification at the CERN HL-LHC (CERN, RTU)
➢ develop novel approaches for HL-LHC collision event reconstruction replacing 

traditional algorithms with AI-driven techniques towards HPC-to-Exascale

➢ Seismic imaging with remote sensing for energy applications (FZJ, UOI, CYI)
➢ optimize seismic imaging and remote sensing, enabling AI approaches, combining 

satellite and airborne data with seismic imaging

➢ Defect-free metal additive manufacturing (UOI, FM)
➢ develop prediction models that detect porosity inside metal parts such that the 

information is exploited to improve the product quality in additive manufacturing 

➢ Sound engineering (FZJ, UOI)
➢ develop a deep-learning-based algorithm that associates individual anatomy to a 

head-related transfer function (HRTF), for use in spatial audio systems
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WP4 use-cases



RAISE example use-case:
Event reconstruction and 
classification at the
CERN HL-LHC



Event reconstruction at the LHC

➢ Event reconstruction attempts to solve the inverse problem of particle-detector interactions, 
i.e., going from detector signals back to the particles that gave rise to them

➢ Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and 
gives particle types and momenta as output
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AI-based particle flow reconstruction workflow
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[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M.,  Girone, M. (2022). Machine 

Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330

CMS Collision event MLPF event reconstruction [1]

Physics simulation Dataset creation GNN training Trained model

Model export
Data pre-

processingData selection

Event 
reconstruction

http://arxiv.org/abs/2203.00330


Machine-Learned Particle-Flow (MLPF)

➢ The Particle Flow (PF) Algorithm [1]
➢ Tries to identify and reconstruct all stable individual 

particles from collision events by combining 
information from different subdetectors (tracks, 
calorimeter clusters)

➢ Machine-Learned Particle-Flow (MLPF) [2]
➢ GPU accelerated, GNN-based algorithm for PF

➢ Code available on GitHub

➢ ACAT2021 talk by J. Pata (and proceedings)

➢ ACAT 2021 talk by E. Wulff (and proceedings) 

➢ ACAT2022 poster – latest results
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[2] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using 
graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w

Based on Eur. Phys. J. C 81, 381 (2021)

https://arxiv.org/abs/2101.08578

The MLPF model

[1] CMS Collaboration https://cds.cern.ch/record/1194487?ln=en

https://github.com/jpata/particleflow
https://indico.cern.ch/event/855454/contributions/4597457/
https://doi.org/10.1088/1742-6596/2438/1/012100
https://indico.cern.ch/event/855454/contributions/4598499/
https://doi.org/10.1088/1742-6596/2438/1/012092
https://indico.cern.ch/event/1106990/contributions/4998026/
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://arxiv.org/abs/2101.08578
https://cds.cern.ch/record/1194487?ln=en


Large-scale distributed hyperparameter optimization (HPO)
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➢ 96 GPUs in parallel

➢ Using ASHA + Bayesian Optimization

➢ Scalable up to hundreds of GPUs

➢ Mean validation loss decreased by 
~44% giving a significant 
performance improvement

Distributed HPO

Assess learning 
variability Better learning
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[1][1]

[1] E.Wulff, M. Girone, J. Pata  https://doi.org/10.1088/1742-6596/2438/1/012092

https://doi.org/10.1088/1742-6596/2438/1/012092


Scaling of HPO of MLPF on multiple compute nodes

1116.03.2023 – CERN openlab Technical Workshop – Geneva – Eric Wulff

➢ Scaling of a HPO run of MLPF on the JURECA-DC-GPU system at the Jülich Supercomputer Centre (JSC), 4 
NVIDIA A100 and 2× 64 cores AMD EPYC 7742 per node

➢ Superlinear scaling due to re-loading of models when using fewer nodes

➢ Using the ASHA algorithm to schedule and terminate trials, in combination with Bayesian optimization

Data used: Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3 for machine learned particle flow (MLPF), https://doi.org/10.5281/zenodo.4559324

https://doi.org/10.5281/zenodo.4559324


Quantum-SVR for 
model performance 
prediction in HPO



Model performance prediction using QSVR

➢ Current STOTA hypertuning algorithms rely 
on early stopping

➢ Stopping criterion: ranking according to a 
single metric (e.g., validation loss)

➢ Potential problem: loss curves are not linear

➢ Idea 1: Use a non-linear stopping criterion

➢ For instance, an SVR model, inspired by [1]

➢ Idea 2: Use quantum computing to fit a 
Quantum-SVR (QSVR)
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Train n epochs
Sample 

random configs
Terminate worst 
x% at last epoch

[1] https://arxiv.org/abs/1705.10823

https://arxiv.org/abs/1705.10823


Dataset creation

➢ Generated dataset consisting of learning curves 
and HP configs

➢ Run 300 MLPF trainings

➢ For each training, sample HPs from a 7-dimensional 
search space

➢ Train for 100 epochs on the publicly available Delphes
dataset (https://doi.org/10.5281/zenodo.4559324)

➢ Inputs:
➢ HP configuration

➢ Partial learning curve

➢ 1st and 2nd order differences of the partial learning curve

➢ Targets
➢ Final validation loss
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https://doi.org/10.5281/zenodo.4559324


Accessing D-Wave Quantum Annealer in CoE RAISE

➢ A quantum annealer is a particular kind of quantum 
computer

➢ Solves QUBO problems (Quadradic Unconstrained Binary 
Optimization)

➢ SVR can be formulated as a QUBO problem [1]

➢ The annealer returns multiple solutions
➢ Quantum annealing is a stochastic process

➢ Challenges
➢ We can only fit 20 training samples

➢ Unstable results, quantum noise

15

Image from D-Wave documentation
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QSVR results

➢ Predicting final loss from fraction of loss 
curve (25%)

➢ QSVR results comparable to classical SVR 
and to simulated quantum annealing
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Best QSVR results

R2 scores



Summary



Summary

➢ CoE RAISE develops novel, scalable AI methods towards Exascale
➢ Use-cases from a wide range of sciences and industry

➢ Hyperparameter optimization could benefit any data-driven AI-based algorithm

➢ Large-scale distributed HPO significantly increased model performance in the 
example use-case of Machine-Learned Particle Flow (MLPF)

➢ Would not have been possible without access to HPC resources

➢ The disruptive technology of Quantum Computing is already here and can be 
integrated in hybrid Quantum-HPC workflows

➢ The technology is still very early-stage and is likely to improve greatly in the future
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drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise


Backup



Hyperparameter Optimization

➢ Tune hyperparameters (HPs) to improve model

➢ HPs are not learned by gradient descent
➢ Often stay constant during the learning process
➢ Defines the model architecture (e.g., #layers, #nodes per 

layer, type of activation function, etc.) 
➢ Defines the learning algorithm (e.g., optimizer, learning 

rate, batch size, momentum, weight decay, dropout etc.)

➢ Can be automated using HPO algorithms
➢ E.g., Hyperband, Bayesian Optimization

➢ HPO on complex models and large datasets is 
compute-resource intensive

➢ Benefits greatly from HPC resources
➢ In need of smart, efficient search algorithms
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Hypertuning tool of choice: Ray Tune

➢ Open-source tool for multi-node distributed 
hyperparameter optimization

➢ Many built-in SOTA search algorithms
➢ ASHA/Hyperband

➢ Bayesian Optimization

➢ Population Based Training

➢ Supports TensorFlow, PyTorch and others

➢ Supports integration of many other hypertuning tools 
such as Scikit-Optimize, HyperOpt, Optuna, SigOpt, 
etc.
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Using Ray Tune on SLURM clusters
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#!/bin/sh

#SBATCH ...
#SBATCH ...

# Get the node names
nodes=$(scontrol show hostnames $SLURM_JOB_NODELIST)
nodes_array=( $nodes )

# Get the head node
node_1=${nodes_array[0]}
ip=$(srun --nodes=1 --ntasks=1 -w $node_1 host ${node_1}i | awk '{ print $4 }') port=6379
ip_head=$ip:$port
export ip_head
echo "IP Head: $ip_head"

echo "STARTING HEAD at $node_1"
srun --nodes=1 --ntasks=1 -w $node_1 mlpf/raytune/start-head.sh $ip &
sleep 30

worker_num=$(($SLURM_JOB_NUM_NODES - 1)) #number of nodes other than the head node
for (( i=1; i<=$worker_num; i++ ))
do
node_i=${nodes_array[$i]}
echo "STARTING WORKER $i at $node_i"
srun --nodes=1 --ntasks=1 -w ${node_i} mlpf/raytune/start-worker.sh $ip_head &
sleep 5

done

# Run the Ray Tune script
python3 tune_script.py --cpus "${SLURM_CPUS_PER_TASK}" --gpus "${SLURM_GPUS_PER_TASK}"
exit

➢ Can be unintuitive when first setting up

➢ Ray expects a head-worker architecture 
with a single point of entry

➢ We must start a head node and multiple worker 
nodes before running the Ray Tune training 
script on the head node

➢ Once properly set-up, works great



Hypertuning MLPF on HPC systems

➢ Thanks to Forschungszentrum Jülich (FZJ), San Diego 
Supercomputing Center (SDSC), Flatiron Institute (collaboration 
with CMS and CERN openlab)

➢ Using multiple compute nodes with 4 GPUs per node
➢ Both systems: 4 NVIDIA A100 40GB per node

➢ @CoreSite: 64 core Intel Icelake Platinum 8358

➢ @JUWELS: 2x 24 core AMD EPYC Rome 7402

➢ We did 2 stages of hypertuning:
➢ Using Ray Tune 

➢ BOHB [1] - Bayesian Optimization combined with Hyperband – using 
JUWELS Booster

➢ ASHA [2] + Bayesian Optimization [3] – using CoreSite

➢ ~76000 core-hours in total

➢ Back of the envelope calculation shows that it would have taken ~6 
months on a single GPU instead of ~83 hours using HPC systems
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search_space = {

"lr": loguniform(1e-4, 3e-2),

"expdecay_decay_steps": quniform(10, 2000, 10),

"dropout": uniform(0.0, 0.5),

"clip_value_low": uniform(0.0, 0.2),

"dist_mult": uniform(0.01, 0.2),

}

search_space = {

"layernorm": samp([False, True]),

"ffn_dist_hidden_dim": samp([32, 64, 128, 256]),

"ffn_dist_num_layers": samp([1, 2, 3, 4]),

"distance_dim": samp([32, 64, 128, 256]),

"num_node_messages": samp([1, 2, 3, 4]),

"num_graph_layers_common": samp([1, 2, 3, 4]),

"num_graph_layers_energy": samp([1, 2, 3, 4]),

"bin_size": samp([16, 32, 40, 64, 80]),

"normalize_degrees": samp([True, False]),

"output_dim": samp([32, 64, 128, 256]),

}

Image: Run in part on the JUWELS Booster [2] 



Improvements from hypertuning

2516.03.2023 – CERN openlab Technical Workshop – Geneva – Eric Wulff

➢ Loss curves before (left) and after (right) hypertuning

➢ Only the physical datasets, no single particle gun samples

➢ Mean and standard deviation of 10 trainings with identical hyperparameters

➢ Mean validation loss decreased by ~44%

[1] E.Wulff, M. Girone, J. Pata  https://doi.org/10.1088/1742-6596/2438/1/012092

https://doi.org/10.1088/1742-6596/2438/1/012092

