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Introduction




CoE RAISE

> CoE RAISE [1]: Center of Excellence for Research on Al- and
Simulation-based Engineering at Exascale

> Develop novel, scalable Artificial Intelligence technologies
> Connect

> hardware infrastructure

> software infrastructure

» compute-driven use cases

> and data-driven use cases

> CERN (Dr. M. Girone) leads WP4: Data-Driven Use-Cases
towards Exascale [2]

> Including Task 4.1 (E. Wulff): Event reconstruction and .
Claslsz(tcatzon at the CERN HL-LHC, which we'll see more details
on later

> UOI (Prof. M. Riedel) leads WP2: Al- and HPC-Cross
Methods at Exascale [3]

> \F;\;B\Aides expert support on HPC and Al methods to use cases in
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CoE RAISE: Modularity of Next-Generation HPC Systems RAISE

Center of Excellence

Module 1 Simulation
Cluster workflow

. Module 6 \
. Multi-tier \
~ Storage System
Complex hardware Complex task .. A
Module 5 Module 3
Quantum - Data Analytics
Module Module
aN . aN Module 4 AN AN AN
> Find the most suitable hardware for a specific task - e T
> Enable intertwined Al- and HPC-workflows Deop Data Analytics
) . . . NN - NN
> EuroHPC's roadmap includes integrating Quantum Learning workflow
Computers and Quantum simulators in-already existing workflow
Supercomputer centers [1]
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= _ Exascale
data-driven use-cases

> Representative use-cases from research and industry/SMEs, which have a
strong focus on data-driven technologies, i.e., analyzing data-rich
descriptions of physical phenomena

> Event reconstruction and classification at the CERN HL-LHC (CERN, RTU)

> develop novel apﬁroaches for HL-LHC collision event reconstruction replacing
traditional algorithms with Al-driven techniques towards HPC-to-Exascale

> Seismic imaging with remote sensing for energy applications (FZJ, UOI, CYI)

> optimize seismic imaging and remote sensing, enabling Al approaches, combining
satellite and airborne data with seismic imaging

> Defect-free metal additive manufacturing (UOI, FM)

» develop prediction models that detect porosity inside metal parts such that the
information is exploited to improve the product quality in additive manufacturing

> Sound engineering (FZJ, UOI)

» develop a deep-learning-based algorithm that associates individual anatomy to a
head-related transfer function (HRTF), for use in spatial audio systems
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RAISE example use-case: A
Event reconstruction and

classification at the
CERN HL-LHC




Event reconstruction at the LHC ASE

Center of Excellence

> Event reconstruction attempts to solve the inverse problem of particle-detector interactions,
l.e., going from detector signals back to the particles that gave rise to them

> Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and
gives particle types and momenta as output

A
' neutral

\ hadron
1

Detector

Particle Flow

ECAL
clusters

16.03.2023 — CERN openlab Technical Workshop — Geneva — Eric Wulff 7



Al-based particle flow reconstruction workflow RAISE

Center of Excellence

Physics simulation Dataset creation GNN training Trained model

M

A

1 neutral
% hadron
"

Data pre-

Data selection processing

Model export

!l CMS Simulation Preliminary
i| tt+ PU, /s =14 TeV

\ Machine-Learned Particle Flow reconst

Event -
reconstruction =

. Charged hadrons . HFEM

e v/ > . —
CMS Collision event MLPF event reconstruction %
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Machine-Learned Particle-Flow (MLPF) RAISE

Center of Excellence

The MLPF model

I I Event as input set Event as graph Transformed inputs
> The Particle Flow (PF) Algorithm [1] Las i tes's fomea
> Tries to identify and reconstruct all stable individual o " -
particles from collision events by combining R G- _ff:_, Message R T
information from different subdetectors (tracks ° . building ey
. J o TXIw=A CX,Alw)=H
calorimeter clusters)
Target set ¥ = {y;} QOutput set Y’ = {)C,f} l

> Machine-Learned Particle-Flow (MLPF) [2] L

classification & regression
——>

> GPU accelerated, GNN-based algorithm for PF D byl w) =y

» Code available on GitHub x; = [elem . type. pr, Egcars Encars 1 - Mouers Pouters s -]
y; = [PID, py, E, 11, b, q], PID € {none, charged hadron, neutral hadron, y, e, u*, ...

» ACAT2021 talk by J. Pata (and proceedings) By € RV
Trainable neural networks: %, &,

» ACAT 2021 ta Ik bv E. Wu H:f (a ﬂd P roceed | Ng S) ® - track, W - calorimeter cluster, M - encoded element
- ' - target (predicted) particle, - no target (predicted) particle
» ACAT2022 poster — latest results

Based on Eur. Phys. J. C 81, 381 (2021)
https://arxiv.org/abs/2101.08578

[1] CMS Collaboration https://cds.cern.ch/record/1194487?In=en [2] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using
' ' ’ graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w
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Large-scale distributed hyperparameter optimization (HPO) RAISE

Center of Excellence

Distributed HPO
Ray Tune train.py: tune.run > 96 GPUS iﬂ pa ra”el
\

tune

» Using ASHA + Bayesian Optimization

Trial m

> Scalable up to hundreds of GPUs

Worker 1 Worker 2

Horovod
[ Worker 1 ] [ Worker 2 ]
Worker 1 [ Worker ZJ

O [~ )[oer) %W%:] [ﬁ[w—] o) > Mean valiplation.Ios.s.decreased by
- ~44% giving a significant
performance improvement

selection

Run 3 (14 TeV), tt, QCD with PUS0; u, i, mo, T, v, single particle guns

CMS Simulation Preliminary
Validation loss

0.10
2.50 Run 3 (14 TeV), tt, QCD with PU50 250 Run 3 (14 TeV), tt, QCD with PU50
0.08 ’ —— Training loss —— Training loss
—— Validation loss —— Validation loss
2:25
Top trials
0.0010 oM CMS Simulation Preliminary
#2 After hypertunmg
— #3 . Mean and s ta?d rdodaeﬁ\.l tf Déglz?t ainings
: +
0.0008 — #g ASSGSS Iea mlng B tt | . F::gl vﬁng?o:Elgss 0.873 +/- 0.091
— hili etter learning
— #6
S e variability
— #8
==
1.25
0.02
1.00 1.00
0.94 CMS Simulation Preliminary
Bef hypertuni
0.75 Mee:;ean)épsiarl:glar:g deviation of 10 trainings 0.75
Final training loss: 1.57 +/- 0.15
0.92 Final validation loss: 1.55 +/- 0.12

B —— R 05035 56 75 100 135 150 175 200

[ 1 ] Epochs Epochs

16.03.2023 — CERN openlab Technical Workshop — Geneva — Eric Wulff [1] E.Wulff, M. Girone, J. Pata https://doi.org/10.1088/1742-6596/2438/1/012092 10



https://doi.org/10.1088/1742-6596/2438/1/012092

Scaling of HPO of MLPF on multiple compute nodes RAISE

Center of Excellence

> Scalin%\ of a HPO run of MLPF on the JURECA-DC-GPU system at the Julich Supercomputer Centre (JSC), 4
NVIDIA A100 and 2x 64 cores AMD EPYC 7742 per node

> Superlinear scaling due to re-loading of models when using fewer nodes
» Using the ASHA algorithm to schedule and terminate trials, in combination with Bayesian optimization

x 104 Run 3 (14 TeV), tt with PU200 Run 3 (14 TeV), tt with PU200
—— Actual 77 —— Actual
------- Linear - Linear

5 61
—_ System: JURECA-DC-GPU
7)) . 4x NVIDIA A100 GPU, 4x 40 GB HBM2e
b 4 - 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz a 5 i
Q) K S
= 2,
23l )
© &
-
= 3|

2+

2t System: JURECA-DC-GPU
4x NVIDIA A100 GPU, 4x 40 GB HBM2e
1 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz
1 L
16 32 48 64 80 96 16 32 48 64 80 96
Number of GPUs Number of GPUs

Data used: Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3 for machine learned particle flow (MLPF), https://doi.org/10.5281/zenodo.4559324
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Quantum-SVR for

model performance >
prediction in HPO 48




Model performance prediction using QSVR RAISE

> Current STOTA hypertuning algorithms rely
on early stopping

» Stopping criterion: ranking according to a
single metric (e.g., validation loss)

> Potential problem: loss curves are not linear

> |dea 1: Use a non-linear stopping criterion
> For instance, an SVR model, inspired by [1]

> |ldea 2: Use quantum computing to fit a
Quantum-SVR (QSVR)

16.03.2023 — CERN openlab Technical Workshop — Geneva — Eric Wulff

Center of Excellence
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[ random configs | : Train n epochs [ x% at last epoch
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&
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I A

v
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[1] https://arxiv.org/abs/1705.10823 13
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Dataset creation RNSE

> Generated dataset consisting of learning curves

and HP Configs Some MLPF Leaming Curves
> Run 300 MLPF trainings CE
> For each training, sample HPs from a 7-dimensional e
search space AN\
> Train for 100 epochs on the publicly available Delphes o us.
dataset (https://doi.org/10.5281/zenodo.4559324) :
> Inputs: i
> HP configuration el
> Partial learning curve
> 1tand 2" order differences of the partial learning curve *“?t+—07—v—-+——-+——"+——"+——+——
30 40 50 60 70 80 90 100
> Targets e

> Final validation loss

14
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Accessing D-Wave Quantum Annealer in CoE RAISE RAISE

Center of Excellence

. . . N N
> A quantum annealer is a particular kind of quantum o ) = S Qumi; + > Qi

computer i<j i
> Solves QUBO problems (Quadradic Unconstrained Binary 7 €{0.1} and Q isa N x NV symmetric matrix
Optimization)
> SVR can be formulated as a QUBO problem [1] a |
> The annealer returns multiple solutions T
> Quantum annealing is a stochastic process =

> Challenges

> We can only fit 20 training samples
> Unstable results, guantum noise

Image from D-Wave documentation
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QSVR results

> Predicting final loss from fraction of loss
curve (25%)

> QSVR results comparable to classical SVR
and to simulated quantum annealing

R? scores
Number of
Best Worst Mean Std trainings
SVR 0.959 0.318 0.889 0.050 1000
Sim-QSVR.  0.949 0.383 0.901 0.045 100
QSVR 0.948 0.742 0.880 0.056 10

16.03.2023 — CERN openlab Technical Workshop — Geneva — Eric Wulff
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Best QSVR results

440 460 480 500 520 540
true loss
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Summary AISE

Center ol f Excellence

> CoE RAISE develops novel, scalable Al methods towards Exascale
> Use-cases from a wide range of sciences and industry

> Hyperparameter optimization could benefit any data-driven Al-based algorithm

> Large-scale distributed HPO significantly increased model performance in the
example use-case of Machine-Learned Particle Flow (MLPF)

> Would not have been possible without access to HPC resources

> The disruptive technology of Quantum Computing is already here and can be
integrated in hybrid Quantum-HPC workflows

> The technology is still very early-stage and is likely to improve greatly in the future
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Hyperparameter Optimization

> Tune hyperparameters (HPs) to improve model

> HPs are not learned by gradient descent
> Often stay constant during the learning process

> Defines the model architecture (e.qg., #layers, #nodes per
layer, type of activation function, etc.)

> Defines the learning algorithm (e.%., optimizer, learning
rate, batch size, momentum, weight decay, dropout etc.)

» Can be automated using HPO algorithms
> E.g., Hyperband, Bayesian Optimization

> HPO on complex models and large datasets is
compute-resource intensive

> Benefits greatly from HPC resources
> In need of smart, efficient search algorithms

16.03.2023 — CERN openlab Technical Workshop — Geneva — Eric Wulff
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Hypertuning tool of choice: Ray Tune RAISE

> Open-source tool for multi-node distributed

hyperparameter optimization

> Many built-in SOTA search algorithms RAY
> ASHA/Hyperband

> Bayesian Optimization
» Population Based Training ¥
> Supports TensorFlow, PyTorch and others
> Supports integration of many other hypertuning tools 1_ U n e
such as Scikit-Optimize, HyperOpt, Optuna, SigOpt,

etc.
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Using Ray Tune on SLURM clusters

> Can be unintuitive when first setting up

> Ray expects a head-worker architecture
with a single point of entry

> We must start a head node and multiple worker

nodes before running the Ray Tune training
script on the head node

> Once properly set-up, works great

°§’ RAY slurm

waorkload manager

16.03.2023 — CERN openlab Technical Workshop — Geneva — Eric Wulff

RASE

Center of Excellence

nodes=$(scontrol show hosthames SSLURM_JOB_NODELIST)
nodes_array=( Snodes )

node_1=S{nodes_array[0]}

ip=$(srun --nodes=1 --ntasks=1 -w Snode_1 host ${node_1}i | awk '{ print $4 }') port=6379
ip_head=Sip:Sport

export ip_head

echo "IP Head: Sip_head"

echo "STARTING HEAD at Snode_1"
srun --nodes=1 --ntasks=1 -w Snode_1 mlpf/raytune/start-head.sh Sip &
sleep 30

worker_num=S((SSLURM_JOB_NUM_NODES - 1))
for ((i=1; i<=Sworker_num; i++ ))
do
node_i=S${nodes_array[S$i]}
echo "STARTING WORKER Si at Snode_i"
srun --nodes=1 --ntasks=1 -w ${node_i} mlpf/raytune/start-worker.sh Sip_head &
sleep 5
done

python3 tune_script.py --cpus "S${SLURM_CPUS_PER_TASK}" --gpus "S{SLURM_GPUS_PER_TASK}"
exit
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Hypertuning MLPF on HPC systems RAISE

Center of Excellence

> Thanks to Forschungszentrum Julich.(FZJ?, San Diego ,
Supercomputing Center (SDSQ), Flatiron [nstitute (collaboration
with CMS and CERN openlab)

> Using multiple compute nodes with 4 GPUs per node
» Both systems: 4 NVIDIA A100 40GB per node
» @CoreSite: 64 core Intel Icelake Platinum 8358 : =
- @JUWELS: 2x 24 core AMD EPYC Rome 7402 et e S I ¢) JOLIcH

> We did 2 stages of hypertuning:
> Using Ray Tune -

> BOHB g] - Bayesian Optimization combined with Hyperband — using o
JUWELS Booster

> ASHA [2] + Bayesian Optimization [3] — using CoreSite
> ~76000 core-hours in total

> Back of the envelope calculation shows that it would have taken ~6
months on a single GPU instead of ~83 hours using HPC systems
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Improvements from hypertuning RAISE

Center of Excellence

> Loss curves before (left) and after (right) hypertuning
> Only the physical datasets, no single particle gun samples
> Mean and standard deviation of 10 trainings with identical hyperparameters

> Mean validation loss decreased by ~44%

2.50 Run 3 (14 TeV), tt, QCD with PU50 2.50 Run 3 (14 TeV), tt, QCD with PU50
' —— Training loss ' —— Training loss
—— Validation loss —— Validation loss
2.25¢ 2.25¢
CMS Simulation Preliminary
2.00¢ 2.00¢ After hypertuning
Mean and standard deviation of 10 trainings
Final training loss: 0.864 +/- 0.092
1.75¢ 1.75¢ Final validation loss: 0.873 +/- 0.091
0 0
8 1.50¢ 8 1.50¢
a |
1.25¢ 1.25¢
1.00¢ 1.00¢
CMS Simulation Preliminary
Before hypertuning
0.75 Mean and standard deviation of 10 trainings 0.75¢
Final training loss: 1.57 +/- 0.15
Final validation loss: 1.55 +/- 0.12
050325 50 75 100 125 150 175 200 05025 50 75 100 125 150 175 200
Epochs Epochs
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