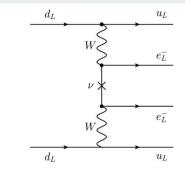
Deep learning based reconstruction for DUNE

QML for $0\nu\beta\beta$

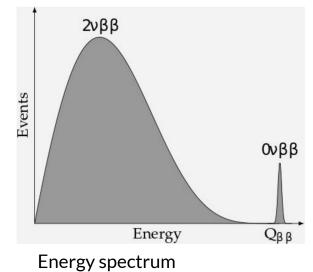
Marco Rossi

CERN openlab technical workshop 2023

17 March 2023



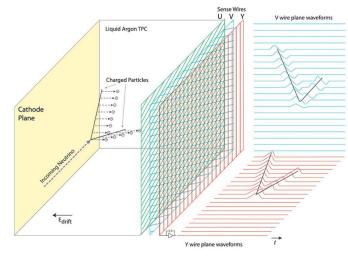
The 0vββ decay of ¹³⁶Xe isotope


Consequences:

- Neutrino and anti-neutrino coincide (Majorana fermions)
- Lepton number violation
- High Q-value, above natural radiation energies: $Q_{BB} = 2.458$ MeV

Feynman diagram

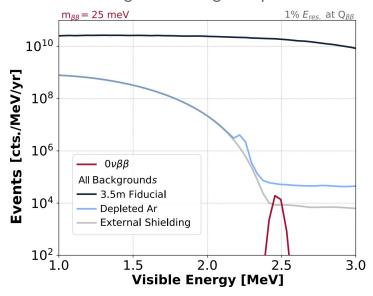
QML for $0v\beta\beta$

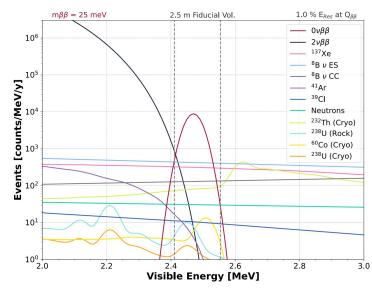

$0\nu\beta\beta$ searches at DUNE experiment

DUNE main goals:

- CP violation in the neutrino sector
- Neutrino mass hierarchy
- Supernova neutrino bursts
- Proton decay

Far Detectors (FD): four 10 ktons fiducial mass LArTPCs


A 10kt FD module doped at ~2% 136 Xe could allow for 0v $\beta\beta$ search


source

Background sources - Mitigation strategies

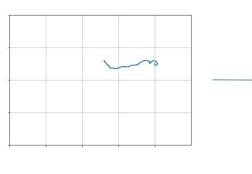
- Environmental radioactivity → VOLUME FIDUCIALIZATION
- Neutrons from (α , n) reactions \rightarrow PASSIVE SHIELDING
- Single β emission with Q₀~2.5 MeV in 42 Ar $\rightarrow {}^{42}$ K $\rightarrow {}^{42}$ Ca \rightarrow USE OF DEPLETED ARGON
- Solar neutrinos (CC and ES interactions) → PHOTON COINCIDENCE TAG
- Cosmogenically-activated radioisotopes (⁴¹Ar, ¹³⁷Xe, ³⁹Cl ...) → COINCIDENCE MUON TIMING VETO
- 136 Xe $2vv\beta\beta \rightarrow$ IRREDUCIBLE BACKGROUND

Mitigation strategies impact

Signal and Background spectra after mitigation

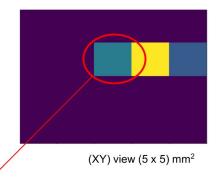
οvββ vs ⁴²Ar single-β Classification

IN FACT DEPLETED ⁴²Ar CANNOT BE PRODUCED IN HIGH QUANTITIES


NEED OF DIFFERENT STRATEGY \rightarrow MACHINE LEARNING

Generate Toy dataset:

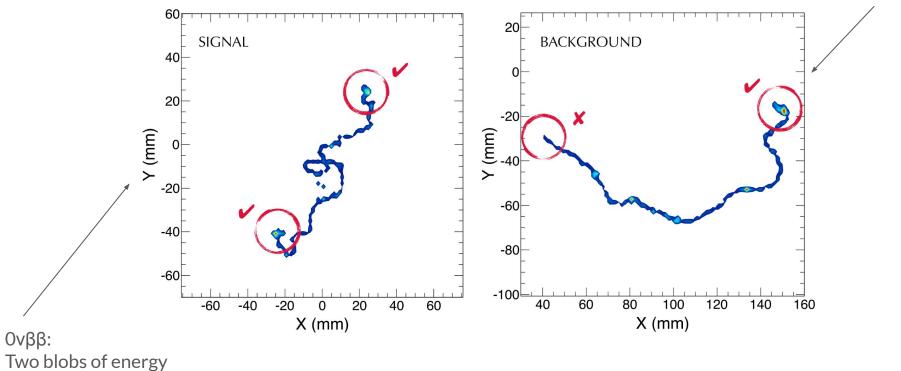
- Geant4 simulated high resolution β and $\beta\beta$ tracks at Q=2.458 MeV (11k and 10k events respectively)
- DUNE resolution: 3D track voxelization with 5x5x1 mm³ bins.
- No detector effects taken into account


Issues:

- Low energy resolution: ~1 MeV
- Short tracks ~1.2 cm
- Too few pixels for pattern recognition

Geant4 track

Voxelized projection

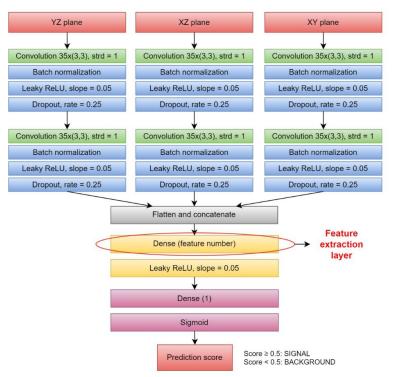


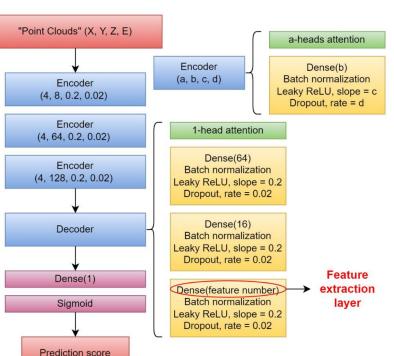
QML for $0\nu\beta\beta$

Signal vs background

deposition at both ends

Single β: Only one blob of energy deposition at track end

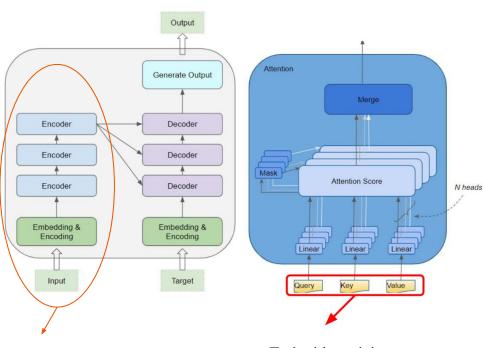



6

QML for $0v\beta\beta$

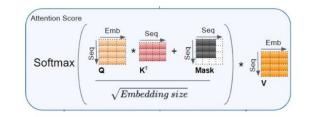
Feature Extractors

CNN



ATN

QML for $0v\beta\beta$


Transformer Block



Transformer Encoder

Trainable weights

Attention Mechanism $\mathbb{R}^{qxh} \mapsto \mathbb{R}^{qxh'}$ (self)

Evaluation - Resolution study

Consideration for ProtoDUNE geometry

- DUNE wire pitch is 5 mm on x, y axis and 1 mm on z axis
- DUNE energy sensitivity is ~0.1 MeV per voxel
- Οvββ events activate very few hits: classification accuracy is poor ~68% with CNN

What if we could build a more efficient detector?

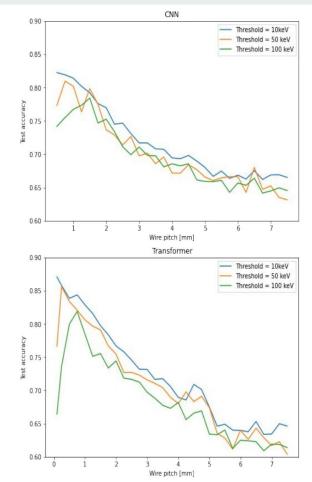
- Increase spatial resolution to 1 mm on all axes
- Increase energy sensitivity: up to 10x factor

QML for $0\nu\beta\beta$

Evaluation - Resolution study

Spatial resolution correlates more than energy resolution

Low resolution (1mm \leq pitch \leq 5 mm):


- less voxels
- few active hits

CNN performs better.

High resolution (pitch \$1mm):

- more voxels
- more active hits
- accuracy drops for low energy resolution: energy threshold too high to activate the smaller voxels

ATN is more efficient and reaches higher accuracy

Thank you !

Questions?

CERN openlab technical workshop 2023

17 March 2023

