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Foundation Models

• A model trained on broad data and adaptable to a range of different downstream tasks, zero-shot, few-shot learning.

• Foundation Models concepts:

• self/semi-supervised learning + transfer learning but at scale:

• Billions of parameters and gigabytes of data

• Large and diverse datasets → powerful representations

• Examples: 
• BERT (340M params.), GPT-2, GPT-3 (175B params.) – Generative language models

• CLIP – Language-Image pre-training

• DALL-E, DALL-E 2, Imagen – Text to Image models

• GATO – Sequence to sequence model

• Stanford CRFM (2021) : On the Opportunities and Risks of Foundation Models [arxiv.2108.07258]
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Image obtained from:

On the Opportunities and Risks of Foundation Models

https://arxiv.org/abs/2108.07258


Introduction

Why use Foundation Models:

• ML is computational expensive with large datasets and models
• Train once. Then, adapt to new detector geometries, quickly.

• Transformers as building block in foundation models:
• A generalized architecture without any inductive bias

• Model long-range dependencies (Attention mechanism)

• Permutation invariant

• Initially proposed for sequence-to-sequence tasks

Our Objective:

• Foundation model trained on MC data to perform different physics related tasks

Simulations - one lengthy training, then fast adaptation to different detector geometries

Reconstruction - one base model adaptable to different tasks (particle identification, regression on phys. variables, etc.

• Understand how foundation model concept apply to our use case:
• Understand the minimal scale of the model for reaching meaningful results (No need to reach BERT / GPT-3 scale)

First Phase: Checking learned shower representation with transformers

Second Phase: Generative Foundation model for fast and accurate calorimetry simulation

Third Phase: Large scale training 
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Generative Foundation Model for FastSim

Dataset:

• High Granularity Electromagnetic Calorimeter Shower Images [zenodo]
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Original Subset

Energy 1 GeV - 1 TeV 64, 128 & 256 GeV

Angle 50º - 90º 70º

Detector Materials SiW, SciPb SiW

Granularity 40k 12k / 40k

Cylindrical read-out along particle direction

Electromagnetic Calorimeter Shower Image

https://zenodo.org/record/6082201#.ZArnNh_MJPb


First Phase

Using a ViT model to learn the shower representation
• Using a masked Language model (MLM)
• MLM is learning representation by trying to predict hidden information
• An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [arXiv:2010.11929]

Classification:

• Downstream classifier (Downstream task)
• Try to predict the energy of the incident particle from transformer embeddings.
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Energy prediction Angle prediction

https://arxiv.org/abs/2010.11929


More work done…

A lot of other tasks:

• VAE like-learning with transformers
• Graph Neural Network
• Preprocessing
• Sinkhorn Loss
• Secondary Loss for regression task

Current focus on Generative Task (Second Task):

• Diffusion
• Denoising Diffusion Probabilistic Models (DDPM)
• Used for most of the foundation models for image generation

• Auto-regressive
• Vector Quantised-Variational Auto Encoder (VQ-VAE)
• Commun on NLP tasks while also showing good results on images tasks



Diffusion Model

What are diffusion Models:

• Idea: 
• Gradually adding Gaussian noise to an image and then use a model to reverse the process

• What is Diffusion: 
• random motion of the particles or molecules, described by the laws of thermodynamics and statistical mechanics

• Diffusion Models are a class of probabilistic generative models that turn noise to a representative data sample.
• Examples:

• DALL-E 2 (Open-AI, 12 billion parameters)
• Imagen (Google)

• Denoising Diffusion Probabilistic Models [arXiv:2006.11239 ]

Why use Diffusion Models:

• High sample generation quality.
• Diverse sample generation.
• Able to do multiple tasks:

• Text to image generation
• Image Inpainting
• etc.

https://arxiv.org/abs/2006.11239


Autoregressive model

VQ-VAE + Transformers:
• VQ-VAE to build a codebook (dictionary) of shower features.
• Transformer to predict those codebook vectors (shower 

features) autoregressively, starting from Layer 0.
• VQVAE sees whole shower. Decodes it into 64* tokens.
• Transformer sees previous tokens, outputs probabilities 

over the next one.
• Advantages:

• 64 forward passes needed.
• Shorter sequence.

• ~10-20 mins per epoch.

17 March 2023 Renato Cardoso | Foundation Model 9



Conclusion and Future Work

Conclusions:
• First phase: Masked Language Model

• Able to achieve good shower representations
• Able to do downstream classifying task

• Multiple different test are being realized at the same time 
• Currently finished with First Phase focusing on the work for the second phase

• 2 different generative models applied to our physics use case, still in proof of concept

Future Work:
• Finish the proof of concept
• Third phase: Scale up the model and the dataset for better representations

• Understand the minimal scale of the model for reaching meaningful results

Paper submission on CHEP 2023: Transformers for Generalized Fast Shower Simulation
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https://indico.jlab.org/event/459/contributions/11742/
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Backup



Dataset and Patches

Dataset:

• High Granularity Electromagnetic Calorimeter Shower Images

Patch configuration:

• Transformers needs a sequence as input

• Patches are formed by making splits in r, phi and z direction

• More patches -> more computationally expensive

• Current:
• 1 patch in r, 10 in phi, 15 in z

• Patch size = 18 x 5 x 3
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Original Subset

Energy 1 GeV - 1 TeV 64, 128 & 256 GeV

Angle 50 - 90 70

Geometries SiW, SciPb SiW



Positional embeddings and Masking

Positional embeddings:

• Transformers are permutation invariant. Positional embeddings 
gives an understanding of position to the model

• Explored:

• 1D learnable keras embedding layer.

• Fixed 3D positional embeddings

• Alternate sine-cosine

• Each direction takes 1/3rd of the embedding dimension

• Phi-rollover

• Observation

• Fixed 3D positional embeddings perform better
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Masking:

• Implementation:

• Randomly choose given percentage of patches to mask

• Set all elements in that patch to zero

• Feed to transformer

• Try to predict the whole input

• Observations

• Better results with higher percentage

• 10% to 90%

• Bellow 60% , no meaningful information learned



VAE-like learning

• Use of a Dense VAE model architecture with transformer encoder in between

• Have a model that already works on this specific task and change to include the attention mechanism

• Substitute the Dense layers, proving that the Attention mechanism is working for this task

• Use Spatial broadcast instead [arXiv:1901.07017]
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https://arxiv.org/abs/1901.07017


VAE-like learning

Results with Dense Layers
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Transformers

• Proposed for sequence-to-sequence tasks

• I/O is any type of sequences.

• Encoder-Decoder blocks

• Positional embeddings

• Attention: Dynamically focus on important parts in the input.

• Multi-headed attention.

Attention Is All You Need [arXiv:1706.03762]
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https://arxiv.org/abs/1706.03762


Preprocess and Loss Function
Preprocessing

Motivation: 
• Exploiting methods developed for computer vision 

comes with the challenging aspect of the dynamic 
ranges of pixel intensities (image:0-255 vs energy 
depositions: >10 orders of magnitude)

• Improve per cell energy generation distribution
• Previous efforts shown results of trade-off between 

faster convergence and retaining image quality*

Preprocessing techniques on shower data (experiments 
carried out on VAE):

• division by energy value of the incident particle in GeV 
and MeV

• log transformation
• power-law

WIP:
• division by max shower energy and 99th percentile

*Khattak, G.R., Vallecorsa, S., Carminati, F. et al. Fast simulation of a high granularity 
calorimeter by generative adversarial networks. Eur. Phys. J. C 82, 386 (2022). 
https://doi.org/10.1140/epjc/s10052-022-10258-4
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Loss function

Motivation: 
• Improve per cell energy generation distribution
• Get more feedback from loss function

Reconstruction loss function experiments:
• Binary Cross Entropy proved to work with our data
• MSE / MAE (did not work)

WIP:
• adding components from secondary learning tasks 

(exps on VAE) 
• regression of the primary particle energy



Autoregressive results

AR Prior

VQVAE
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