Quantum Machine Learning for Earth Observation Images

Su Yeon Chang [CERN, EPFL]

Bertrand Le Saux [ESA], Sofia Vallecorsa [CERN], Michelle Grossi [CERN]

17. March 2023

Introduction

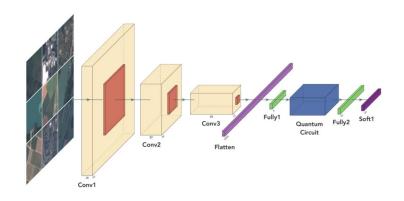
Quantum Machine Learning (QML)

- Intersection between Machine Learning (ML) and Quantum Computing (QC)
- Potential to **improve the existing ML techniques**
- Can be efficiently simulated on the real quantum hardware
- Application of QML on images still challenging
- \rightarrow Large input dimensionality, quantum embedding methods
- \rightarrow Limited to standard dataset (MNIST, Fashion MNIST, etc) [1]

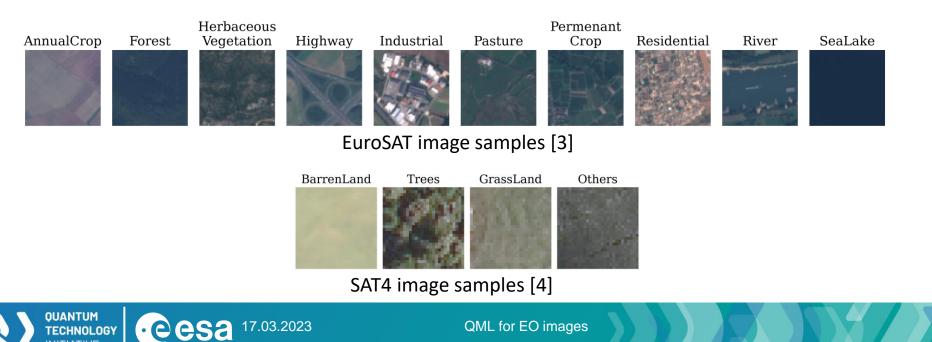
Introduction

Earth observation images

- Highly benefit from ML
- Complex, unlabelled dataset with large number of features
- Increasing number of studies on QML applied on EO
- Explore practical QML models for a realistic EO use-case



Application of QML in EO [2]

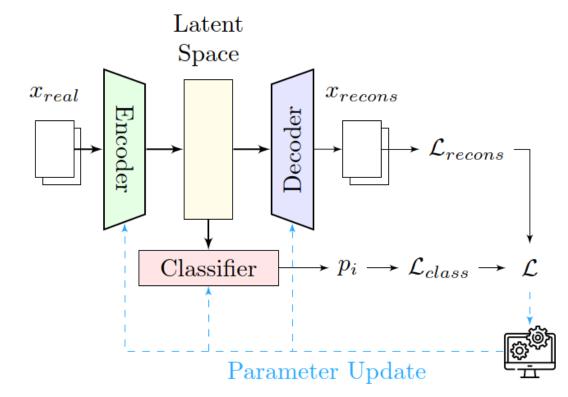


QML for EO images

Hybrid Quantum-Classical model

- Multiclass-classification of large images
- Perform reconstruction & classification at the same time
- \rightarrow Combine feature extractions & classification
- Latent space constrained in $[0, \pi]$
- Autoencoder = Classical

Classifier = Classical / Quantum



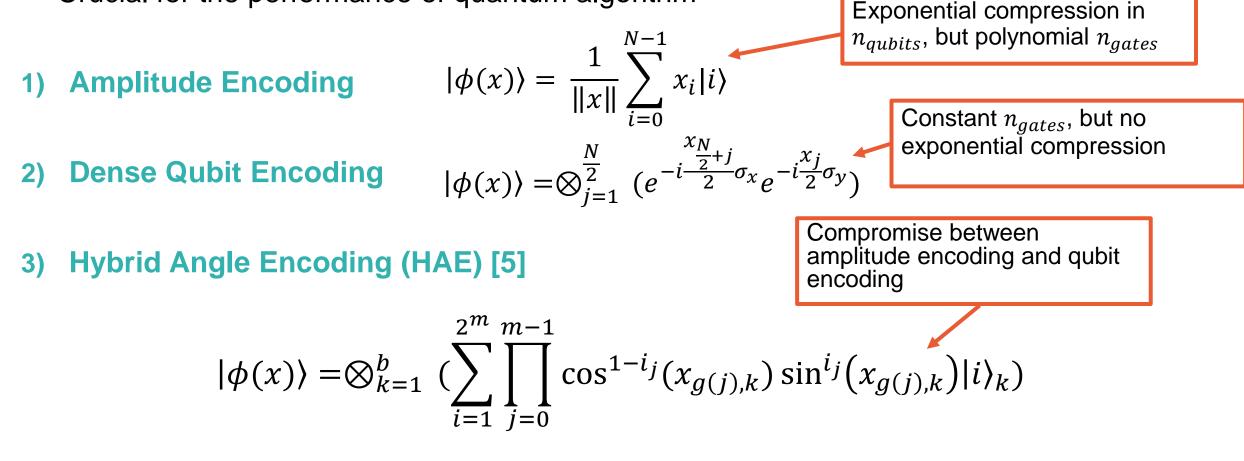
Training schema of the hybrid model

QML for EO images

Quantum Embedding

- Mapping of classical data x into quantum state $|\phi(x)\rangle$ in Hilbert space
- Crucial for the performance of quantum algorithm

17.03.2023



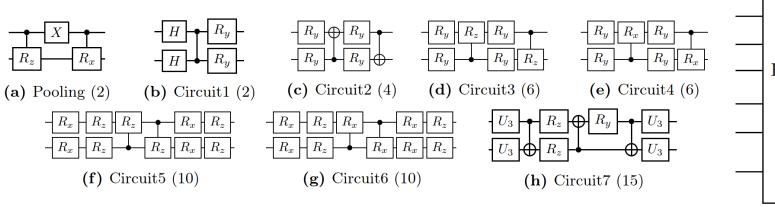
Quantum Convolutional Neural Networks

- Quantum analogue of $CNN \rightarrow Preserve translational invariance$
- Avoid barren plateau problem

QUANTUM TECHNOLOGY

INITIATIVE

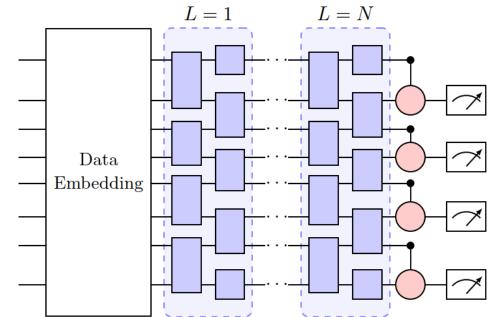
- Start with the model proposed by T. Hur et al. [5]
- Consists of convolutional filters & pooling layers
- \rightarrow Different Ansatz to be investigated



17.03.2023

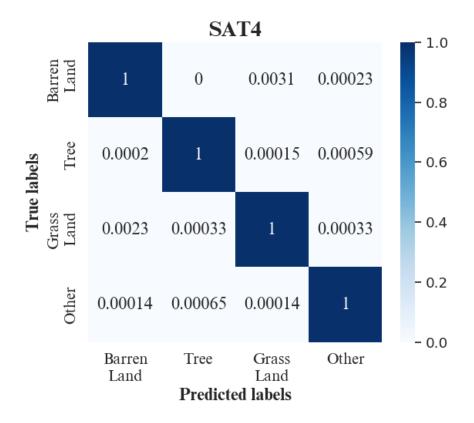
PQC ansatzes used as convolutional filters [4]

· eesa



QCNN for multiclass-classification

• Train the hybrid model with <u>Circuit7 & L = 2</u> for **SAT4** (4 classes)

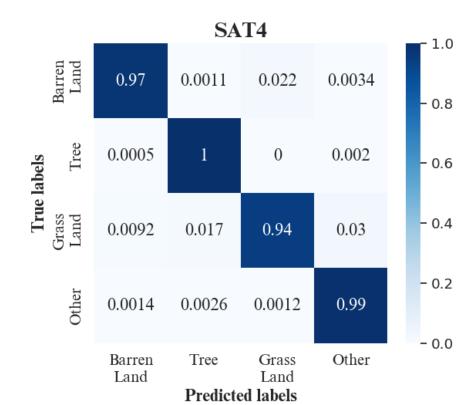


· e esa

17.03.2023

QUANTUM TECHNOLOGY INITIATIVE

Training set



Test set

Results

Train the hybrid model with <u>Circuit7 & L = 1</u> for EuroSAT (10 classes)

- 0.8

- 0.6

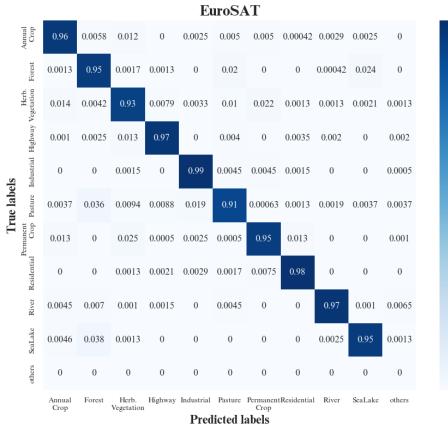
- 0.4

- 0.2

- 0.0

17.03.2023

(·eesa

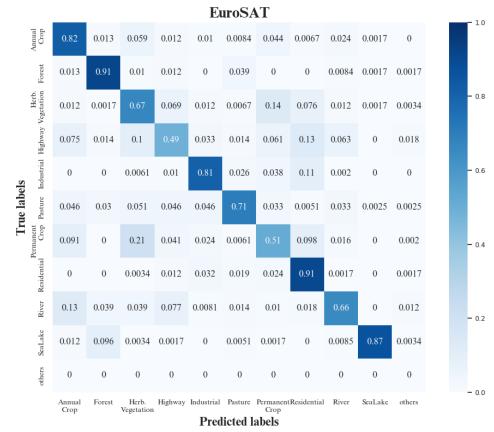


QUANTUM

TECHNOLOGY

Training set

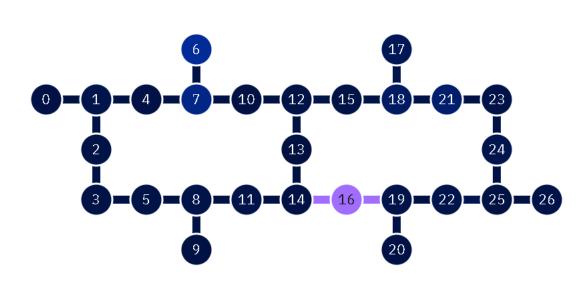
Test set



Results – Evaluation on real quantum hardware

Evaluate pretrained model on IBMQ Montreal with 600 training samples

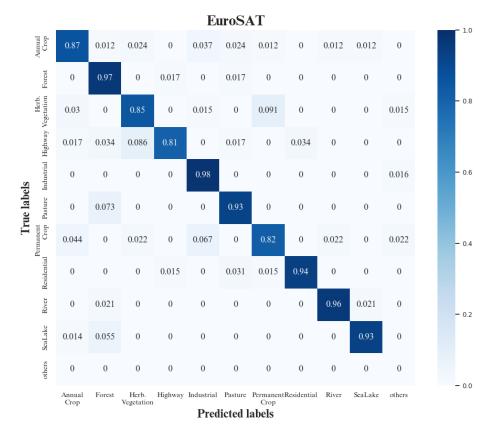
17.03.2023



OUANTUM

TECHNOLOGY

DQE + Circuit 3 (91% w/o noise)

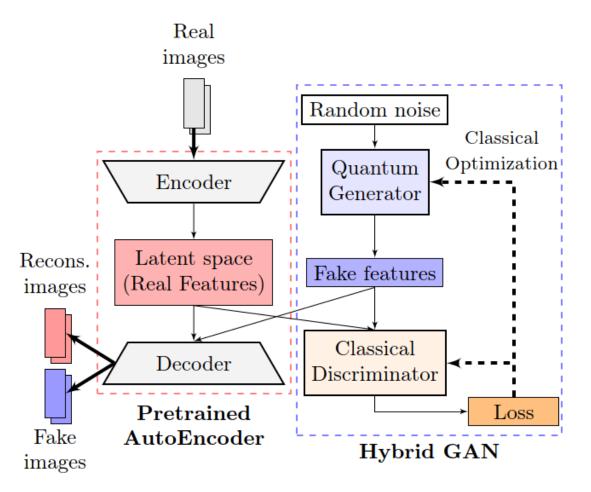


QML for EO images

QML for EO images

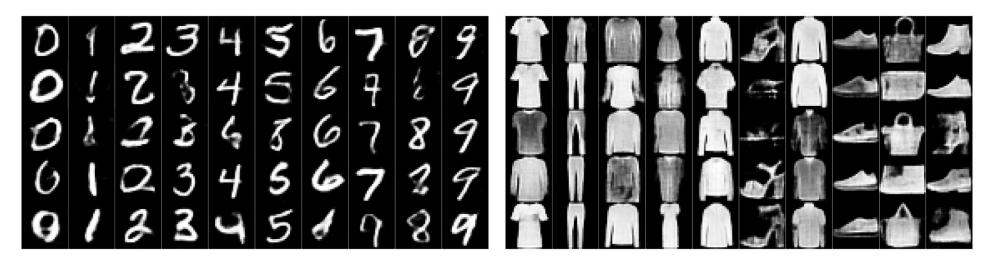
Hybrid Approach for image generation

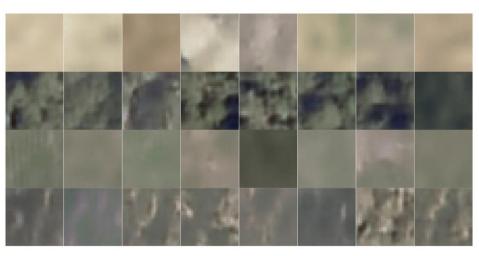
- Quantum Generative Adversarial Networks : Quantum Generator + Classical Discriminator
- Features extracted from images via a pretrained autoencoder used as GAN training set
- Generated features passed back to the autoencoder to reconstruct images



Training schema of the hybrid GAN

Results





QML for EO images

Results

			Quality		Diversity	
	G_{θ} config.	# param.	$FID\downarrow$	IS ↑	JSD (features/ 10^{-2}) \downarrow	JSD (images/ 10^{-2}) \downarrow
LaSt-QGAN	Circ. 1 ($d = 2$)	1360	17.89 ± 0.57	8.21 ± 0.05	1.00 ± 0.15	1.75 ± 0.2
	Circ. 1 ($d = 4$)	2280	15.04 ± 0.49	8.47 ± 0.05	1.00 ± 0.10	1.62 ± 0.15
	Circ. 1 ($d = 6$)	3200	14.34 ± 0.41	8.47 ± 0.03	0.87 ± 0.09	$\boldsymbol{1.37\pm0.14}$
	Circ. 2 ($d = 2$)	1010	19.13 ± 0.54	8.10 ± 0.06	1.22 ± 0.19	2.08 ± 0.17
	Circ. 2 ($d = 4$)	1690	16.2 ± 0.32	8.34 ± 0.03	0.94 ± 0.09	1.66 ± 0.17
	Circ. 2 ($d = 6$)	2370	14.85 ± 0.61	8.47 ± 0.06	0.85 ± 0.05	1.39 ± 0.11
	Circ. 3 $(d = 2)$	3300	14.54 ± 0.50	8.48 ± 0.05	1.01 ± 0.2	1.54 ± 0.1
Classical	[50, 30]	2960	19.41 ± 3.78	8.12 ± 0.36	5.78 ± 3.33	5.71 ± 3.19
	[100, 50]	7660	13.21 ± 0.94	8.72 ± 0.06	1.73 ± 0.44	1.89 ± 0.37

CERN

Conclusion

- Hybrid quantum-classical model for EO image classification
- → Successful multi-class classification (99% for training, >75% for test)
- Two-step approach for generation of images
- \rightarrow Higher generalization power compared to the classical counterpart

Would it be possible to define the quantum advantage in a more solid way?

QUESTIONS?

su.yeon.chang@cern.ch

References

[1] Hubregtsen, T., Pichlmeier, J., Stecher, P. et al. (2021) Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quantum Mach. Intell. 3, 9.

[2] Sebastianelli, A., Zaidenberg, D., Spiller, D., Saux, B., & Ullo, S. (2022). On Circuit-Based Hybrid Quantum Neural Networks for Remote Sensing Imagery Classification. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15,* 565-580.

[3] Helber, P., Bischke, B., Dengel, A., & Borth, D. (2018). Introducing Eurosat: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. *IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium*, 204-207.

[4] Basu, S., Ganguly, S., Mukhopadhyay, S., Dibiano, R., Karki, M., and Nemani, R., DeepSat - A Learning framework for Satellite Imagery, ACM SIGSPATIAL 2015.

[5] Hur, T., Kim, L., & Park, D.K., (2021). Quantum convolutional neural network for classical data classification.

