

Machine Learning for multimorbidity causal inference

Funded by Hoffman la Roche

Nicola Serra (University of Zurich /CERN)

Olivia Jullian Parra, Shrija Rajen Sheth (CERN)

Milo Alan Puhan, Maximilian Sebastian Janisch, Henock Yebyo, Giuseppe Genovese,

Thomas Lehéricy (Univeristy of Zurich)

CERN openlab Technical Workshop

17th March 2023

Outline

• Causal inference in multimorbidity: Introduction and Sate of the art

• Machine Learning for Multimorbidity causal inference: Introduction

• Machine Learning for Multimorbidity causal inference: Timeline

Causal inference in Multimorbidity

17/03/23 OpenLab Technical Workshop

Causal inference challenge

Will statins reduce the risk of cardiovascular diseases?

Random Patient 1

Statins taken

Sufficient to accept the treatment effect?

NO, other variables must be considered: age, other diseases, meds exposure, etc.

Random Patient 2

Statins non taken

Causal inference challenge

• Patient variables that affect the outcome and the treatment effect

We study the treatment effect with the comparison of factual and counterfactual data

Causal inference challenge

Will statins reduce the risk of cardiovascular diseases?

- Previous treatments
- Hypertension

Randomized Controlled Trials (RCTs)

> Reductionist approach to provide causal estimates for single/two treatments for single

diseases

Hypertension...)

Design

Causal structure in RCTs

What if no RCTs are available?

Observational data can be used to estimate causal effects

However, this is still reductionist approach

RCTs for multimorbidity study

- > Not good representation of all the multimorbid population (Selection Bias)
- > The reductionist approach does not contemplate the relation confounder-treatment

Solutions to the challenge

➤The high dimensional observatinal data are potential for generating causal inferences for combinations of treatments for multimobidity

Convergent efforts are needed

Machine Learning for Multimorbidity Causal Inference

17/03/23 OpenLab Technical Workshop

Introduction to Causal Effect VAE

Confounders

- The patient observable confounders represents partially the full reality
- Selection Bias since x is a noisy version of the confounders
- Heterogeneous groups of patients

Introduction to Causal Effect VAE

Introducing a full picture of the reality reduces biased models!

Objectives of the Causal Effect VAE

Objectives

• **P(X,Y,t)**: adquire all the combinations of X,Y,t

• Q(Y/Z,t): Predict factual & conterfactual data to understand the causal effect of t

Idea behind Causal Effect VAE

1) Understand the causality and map it into a gaussian distribution

What a VAE offers:

- Extract Z from X,Y,t (p(Z/X,Y,t)): acquire all the data responsible for the outcome Y
- Predict Y (q(Y/Z,t)): have conterfactual data to understand how t affects the outcome Y

Idea behind Causal Effect VAE

2) Map it into the same gaussian distribution only samples of observational data

What a CEVAE offers:

- Extract Z from X (p(Z/X,Y,t)): acquire all the data responsible for the outcome Y with only X
- Predict Y (q(Y/Z,t)): generate factual & conterfactual data for X to predict the causal effect for a single patient

Benefits of Causal Effect VAE

- Fully representation of the confounders
- Works well with heterogenous groups
- > Very good for multidimensional problems (for more than one treatment, for

time dependent treatments, etc)

- > Useful for benefit-harm studies where with drugs interaction through time
- > Interpretability

Perfect tool to select treatment combinations with the best possible outcome for multimorbidity patients

Machine Learning for Multimorbidity Causal Inference: Timeline

17/03/23 | OpenLab Technical Workshop

Plans and status

- Generated synthetic data with a toy model for patients (controled environment)
- We are now in the process of understanding the CEVAE with the toy data
- Test the model in a low dimensional case and compare it to traditional methods
- Scale to the fully multimorbidity case

