

HPC Benchmarking for Exascale

openlab technical workshop 2023 David Southwick (CERN)

Benchmarking for deployment at HPC-scale presents new challenges external to traditional benchmarking endeavors.

Capturing a more complete snapshot of an HPC system's capabilities requires the combination of many elements – an array that will continue to grow as new technologies become available.

To successfully exploit HPC resources for Big Data workloads, we need to understand the capabilities of not only the compute nodes, but the attached accelerators and supporting file systems and networks.

Context: Benchmarking at CERN

HEP Benchmark Suite: A benchmark orchestrator & reporting tool.

Executes an array of user-defined benchmarks & metadata collection

Support for HPC:

- Minimal dependencies (Python3 + OCI container)
- > Automated result reporting (AMQ/Elastic)
- Scheduler agnostic, unprivileged
- > Easily extendable to other sciences!

https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite

Compute benchmarking

See talk by D. Giordano

CPU Benchmarking

- Traditional CPU benchmarking with HEPscore 2023:
- Production HEP workloads
- Single number result (score)
- Controlled correlation to production
- > Permits direct comparison across models and generations
- > Arm, Power workloads in development

See talks by A. Valassi, E. Wulff D. Southwick - Openlab Technical Workshop - 16.3.2023

CERN Openlab workshop, 16 March 2023

16

6

GPU Benchmarking

> Approach GPU workloads as repeatable benchmark

- Containerized in similar manner to traditional CPU benchmarks
- Support (multi) GPU accelerators for training/tuning

SYCL Kokkos

Examine events/second processed (same metric as HEPiX CPU jobs)

CUDACPP vs SYCL on NVidia/AMD/Intel GPUs Variable GPU-grid size (throughput scan) Fixed GPU-grid size (throughput plateau) ACAT2022 NVIDIA A100 — gg gg→tt̄gg

 Nvidia GPUs: the performances of the SYCL implementation seems ~comparable to direct CUDA for gg→ttgg - More fine-grained analysis on the next slide, for different physics processes

Intel and AMD GPUs: the SYCL implementation runs out of the box

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs XE-HPC is an early implementation of the Aurora GPL

A. Valassi - CPU vectorization and GPUs in Madgraph5_aMC@NLO

Particleflow model training speed

SYCL Kokkos

Non-compute benchmarking

- Data-driven workloads demand performant storage and connectivity (which are shared!)
- > Bottlenecks here significantly throttle job performance
- > Capacity, capability, and monitoring not typically advertised by HPC sites

Summer of HPC student HPC I/O investigation C. Cocha, A. Filipcic, V. Khristenko

Workload I/O benchmark

jobid: 2190289 uid: 1005 nprocs: 1 runtime: 6 seconds

> I/O performance estimate (at the POSIX layer): transferred 172.4 MiB at 37.65 MiB/s I/O performance estimate (at the STDIO layer): transferred 0.1 MiB at 63.62 MiB/s

	loR	Read Write Write						
	HPC bench	marks				File Count Summ	arv	
		Most Common Access Sizes			(estimated by POSIX I/O access offsets)			
\$1, 10, 100, 19 0, 100, 100, 19 0, 100, 19		(PC	access size	count	type	number of files	avg. size	max size
			40284	141	total opened	2	950M	1.9G
Vrite			20873	3	read-only files	1	1.9G	1.9G
11 (h		POSIX	204628	3	write-only files	1	69K	69K
om/hpc/ior			204758	2	read/write files	0	0	0
om (darchar		204730	2	created files	1	69K	₉ 69K	

Problem: Unclear how many data-driven workloads a given site may support without bottleneck shared resources

- > Development of a *workload I/O benchmark*
- > tune to the I/O patterns of real workloads to better inform reasonable scaling capabilities at a given HPC site
- > More representative than sequential throughput metrics
- > Uncover I/O bottlenecks (excessive file opens, read patterns, cache issues)

New formats and architectural structures may offer significant speedups on modern hardware that support them:

- Development and benchmarking of reduced precision (mixed precision) ML training for bfloat16. Testing on latest GPUs + CPUs (where supported)
- > Sub-NUMA clustering studies on recent processors and accelerators
- > Network I/O studies between HPC sites, CERN, GEANT network testbed
- Filesystem I/O studies for VAST NFS platform

- Benchmarking efforts continue to grow, yielding a more complete system representation
- > GPU workloads for HEP benchmarking maturing as studies continue
- Growing support for heterogeneous workloads and accelerators
- Filesystem & network benchmarks representative of HEP workloads
- > We look forward to results of ongoing studies on the path to Exascale

drive. enable. innovate.

