ALICE FoCal beam test activities at PS and SPS in 2022

Max Rauch for the ALICE FoCal Collaboration

PS/SPS Users End of Year Wrap-up / Feedback Session 2nd December 2022

UNIVERSITY OF BERGEN

ALICE FoCal Beam Tests 2022

Hadronic calorimeter

(copper)

•

•

pad size ≈ 1 cm × 1 cm Alpide pixel sensor

ALPIDE pixel sensor (ALICE ITS vertex detector pixel sensor)

Charge measurement per pad with ADC, ToT, and ToA

Longitudinal shower profile information from each laver

- Pixel size of ~30 μm x 30 μm
- 1024 x 512 pixels per chip

8 x 9 pads per sensor

- Time constant of analog front-end ca. 5 µs
- Two-shower separation at the mm-scale

High dynamic range: MIP ↔ 10 pC

Cu tubes + scintillators

Copper tubes parallel to beam pipe (diameter 2.5 mm)

Silicon sensor with pad size of ~1 cm x 1 cm

Each sensor read out with one HGCROC

- Filled with scintillating fibers (diameter 1.1 mm)
- Fibers coupled to silicon photomultipliers
- Prototype 2 with 200 x 200 x 1100 mm³ actvie area

Measurement results will be included in ALICE FoCal TDR (scheduled for 2023)

Electromagnetic

calorimeter (tungsten)

	Beam line / Momentum	FoCal-E Pad	FoCal-E Pixel	FoCal-H
Jun 2022	PS T9 1 – 9 GeV	18 silicon pad sensor + 18 HGCROCs		Full length (110cm) prototype ~ 20cm x 20cm active area
Sep 2022	SPS H6 20 – 120 GeV	Common readout with ALICE CRU/FLP/o2 readout in GBT mode Common trigger with FoCal-H		Common trigger with FoCal-E
Sep 2022	PS T10 5 – 9 GeV	Tests of HGCROC settings		Test of VMM readout
Nov 2022	SPS H2 20 – 350 GeV	Implementation in ALICE o2 online QC	ALICE ITS Outer Barrel HIC layers Implementation in ALICE o2 online QC	

Beam direction

ALICE FoCal Setup at H2

Dec 2, 2022

ALICE FoCal Setup at H2

Dec 2, 2022

FoCal-E Pads w/ Hadrons at PS

- HGCROC uses ADC and TOT information for charge measurement
- MIP peak response measured for various parameters like preamplifier settings, sensor bias voltage, particle energy
- Analysis of electrons between 1 and 5 GeV ongoing

FoCal-E Pads w/ Electrons at SPS H2

- Measured TOT response for electron showers \rightarrow proportional to particle energy
- Very clear longitudinal shower profile resolution possible
- Behavior for > 200 GeV electron showers under investigation

Electromagnetic

Pixel Layers (based on ITS OB HIC)

Hit profile of 300 GeV electron beam at H2

- Prototyping of automated tap-bonded prototype pixel layers from LTU in Kharkiv, UA was delayed in 2022
- Alternative solution developed based on ALICE ITS Outer Barrel HIC modules
 - Assembly activities started in ~August 2022
 - Setup ready for November 2022 beam test
- Full acceptance in Pixel Layer 10, reduced acceptance in Pixel Layer 5

FoCal-E Pads w/ Electrons at SPS H2

- Very good beam purity observed
 - Quantitative analyses to be made
- Number of pixel clusters (i.e. pixel hits grouped to clusters) is approx. proportional to particle energy
- Observed multiple electron shower events
- Interesting studies regarding two-shower resolution can be made
 - \rightarrow two-gamma shower separation from π^{0} decays

FoCal-H in Hadron Beams at H2

Spatial Distribution of Energy in Average Event

2000

1750

1500

750

- 500

- 250

FoCal-H in Hadron Beams at H2

- Charge count in FoCal-H proportional to beam energy
- Spectrum with FoCal-E in front highly affected by preshowers
- Corrections possible in data due to common data taking

of event

Number

10000

ALICE FoCal-H

With FOCAL-E in front

2022 Prototype

Beam Energy

60 GeV 100 GeV

150 GeV

200 GeV 250 GeV

Many thanks to the full PS/SPS team!

ALICE FoCal testbeam crew after the SPS H2 beam test in November 2022

11