# Feedback from n\_TOF on 2022 Operation and Outlook 2023

User feedback meeting, CERN, 02/12/2022

Nikolas Patronis & Michael Bacak



## The n\_TOF facility: EAR1 + EAR2 + NEAR



## Highlights of the 2022 n\_TOF campaign

| EAR1                                                                                                                                                                                                                                | EAR2                                                                                                                                                                                                                                                                                                       | NEAR                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><sup>79</sup>Se(n,γ)</li> <li><sup>160</sup>Gd(n,γ)</li> <li><sup>94,95,96</sup>Mo(n,γ)</li> <li><sup>50,53</sup>Cr(n,γ)</li> <li><sup>239</sup>Pu(n,γ)(n,f)(a-ratio)</li> <li>DDX det. dev.</li> <li>HPGe test</li> </ul> | <ul> <li><sup>79</sup>Se(n,γ)</li> <li><sup>94</sup>Nb(n,γ)</li> <li><sup>160</sup>Gd(n,γ)</li> <li><sup>94,95,96</sup>Mo(n,γ)</li> <li>X17 detector test</li> <li>nn scattering det. test</li> <li>neutron imaging</li> <li>diamond det. test</li> <li>BKG and other<br/>commissioning actions</li> </ul> | <ul> <li><sup>197</sup>Au(n,γ)</li> <li><sup>140</sup>Ce(n,γ)</li> <li><sup>76</sup>Ge(n,γ)</li> <li><sup>94</sup>Zr(n,γ)</li> <li><sup>89</sup>Y(n,γ)</li> </ul> |

- 9 neutron capture reactions have been studied (2 of the for the first time) at EAR1 & EAR2
- 5 detector development projects have been accomplished
- 1 fission tagging measurement has been performed
- 5 neutron capture reactions have been studied at NEAR with different filter configurations
- 2 new detector setups have been successfully applied for the first time

- protons expected:2.45E19
- protons received: 2.45E19





- At the beginning of 2022 campaign some pre-pulses were recorded from our detectors. This complicates a lot the data analysis of our TOF data. Problem solved by adjusting the bunch rotation (42 ns vs 28 ns)
- On n\_TOF request the PS produced the cleanest beam ever wrt pre- and post tails of the TOF pulse at the cost of a slightly degraded pulse width (42 ns (2022) vs 28 ns (2018)). Ideal would be 7 ns (4σ=28 ns) without tails – first shots delivered end of 2022 Run.
- The neutron flux in EAR2 is changing with respect the vertical position of the beam centroid +- 3 mm SIS interlock on vertical centroid in place from machine side 1% flux fluctuation.
- For a few days (between 14.09.2022 18.09.2022) the BCT values were not correct (NXCALS). This imposes difficulties in the quality checks of the data.



- At the beginning of 2022 campaign some pre-pulses were recorded from our detectors. This complicates a lot the data analysis of our TOF data. Problem solved by adjusting the bunch rotation (42 ns vs 28 ns)
- On n\_TOF request the PS produced the cleanest beam ever wrt pre- and post tails of the TOF pulse at the cost of a slightly degraded pulse width (42 ns (2022) vs 28 ns (2018)). Ideal would be 7 ns (4σ=28 ns) without tails – first shots delivered end of 2022 Run.
- The neutron flux in EAR2 is changing with respect the vertical position of the beam centroid +- 3 mm SIS interlock on vertical centroid in place from machine side 1% flux fluctuation.
- For a few days (between 14.09.2022 18.09.2022) the BCT values were not correct (NXCALS). This imposes difficulties in the quality checks of the data.



- At the beginning of 2022 campaign some pre-pulses were recorded from our detectors. This complicates a lot the data analysis of our TOF data. Problem solved by adjusting the bunch rotation (42 ns vs 28 ns)
- On n\_TOF request the PS produced the cleanest beam ever wrt pre- and post tails of the TOF pulse at the cost of a slightly degraded pulse width (42 ns (2022) vs 28 ns (2018)). Ideal would be 7 ns (4σ=28 ns) without tails – first shots delivered end of 2022 Run.
- The neutron flux in EAR2 is changing with respect the vertical position of the beam centroid +- 3 mm SIS interlock on vertical centroid in place from machine side 1% flux fluctuation.
- For a few days (between 14.09.2022 18.09.2022) the BCT values were not correct (NXCALS). This imposes difficulties in the quality checks of the data.



- At the beginning of 2022 campaign some pre-pulses were recorded from our detectors. This complicates a lot the data analysis of our TOF data. Problem solved by adjusting the bunch rotation (42 ns vs 28 ns)
- On n\_TOF request the PS produced the cleanest beam ever wrt pre- and post tails of the TOF pulse at the cost of a slightly degraded pulse width (42 ns (2022) vs 28 ns (2018)). Ideal would be 7 ns (4σ=28 ns) without tails – first shots delivered end of 2022 Run.
- The neutron flux in EAR2 is changing with respect the vertical position of the beam centroid +- 3 mm SIS interlock on vertical centroid in place from machine side 1% flux fluctuation.
- For a few days (between 14.09.2022 18.09.2022) the BCT values were not correct (NXCALS). This imposes difficulties in the quality checks of the data.

#### n\_TOF 2022 and 2023

**Conclusions 2022:** 

- >20 successful measurements: physics + commissioning + several detector developments
- 100% match of experiment planning vs. delivered beam
- Stable beam conditions throughout the whole year
- Thanks to all the people, teams and machines involved in this successful run

**Outlook/wishlist 2023:** 

- Proton planning: 203 days physics @ 1E17 p/day = 2.03E19 protons
- Proton bunch characteristics:
  - Come back to a "no-tails 28 ns bunch" @ bunch intensity up to 8.5E12
  - Double bunch cycle (make use of empty slots in the machines)
  - Transverse profile on target as 2022
- Spallation target: intention to increase the avg. intensity interlock from 1.67E12 p/s to 2.2E12 p/s. Test successfully performed this year formal approval from authorities pending (+ SY-STI-TCD and RP but no show stoppers observed) 8