Exercises Day 1

Exercise 1. (See figures below) In this and a later exercise, we will argue why $SLE(6)$ is a natural scaling limit for a percolation interface. Denote by Λ the hexagonal lattice, and let Ω be a rhombus with corners p_1, p_2, p_3, p_4 counterclockwise. Denote by $\Omega^{\delta} := \Omega \cap \delta \Lambda$ the hexagonal δ -discretization of Ω . Consider a site percolation on Ω^{δ} with Dobrushin boundary conditions:

- Color the hexagons on S_4 blue, and the hexagons on S_1, S_2, S_3 red.
- Color each interior hexagon independently either red or blue with equal probability.

Denote by γ^{δ} the interface between the blue and red hexagons started from the point p_1 .

(A) Rhombus Ω and its hexagonal discretization Ω^{δ} with (B) A sample of percolation on Ω^{δ} . The highlighted inter-Dobrushin boundary conditions. face is the curve γ^{δ} .

(a) An LR-crossing (UD-crossing) is a path of blue (red) hexagons from S_2 to S_4 (S_1 to S_3). Show that every configuration has either an LR or UD crossing, but not both. Find a bijection between configurations with LR-crossings and UD-crossings. From this, conclude that both events have equal probability equal to $\frac{1}{2}$:

 $P({\{There\ is\ an\ LR\-crossing\}}) = P({\{There\ is\ a\ UD\-crossing\}}) = 1/2.$

- (b^*) Show that γ^{δ} is a curve from p_1^{δ} to p_4^{δ} , where p_j^{δ} is a vertex in Ω^{δ} closest to p_j . Show that γ^δ hits the boundary S_2 if and only if there is an LR-crossing.
- (c) Assuming γ^{δ} has a conformally invariant scaling limit as $\delta \downarrow 0$, argue why it has to be an SLE(κ) curve in Ω from p_1 to p_4 for some $\kappa \geq 0$. Hint: formulate and check a discrete version of the domain Markov Property for γ^{δ} .

The Virasoro algebra \mathfrak{Vir} is an infinite dimensional Lie algebra with generators $L_k, k \in \mathbb{Z}$ and C satisfying the commutation relations

$$
[L_n, L_m] = (n - m)L_{n+m} + \frac{1}{12}n(n^2 - 1)\delta_{n,-m}C, \text{ for } n, m \in \mathbb{Z},
$$

$$
[L_n, C] = 0.
$$

A $\mathfrak V$ **ir-module V** is a highest-weight module if

 $V = \mathfrak{Vir} \, v_{c,h}$

where $v_{c,h} \in V$ is a highest-weight vector of weight $h \in \mathbb{C}$ and central charge $c \in \mathbb{C}$ which satisfies the following relations:

$$
C v_{c,h} = c v_{c,h}, \qquad L_0 v_{c,h} = h v_{c,h}, \qquad L_n v_{c,h} = 0 \quad \forall n > 0,
$$

Such a module admits a PBW-basis

$$
V = \text{span}\{L_{-n_1} \dots L_{-n_k} v_{c,h} \mid n_1 \ge n_2 \ge \dots \ge n_k > 0, k \in \mathbb{Z}_{\ge 0}\}\
$$

Exercise 2. Show that the L_0 eigenvalue of a given basis vector $v = L_{-n_1} \ldots L_{-n_k} v_{c,h} \in V$ is given as follows

$$
L_0 v = \left(h + \sum_{i=1}^k n_i\right)v.
$$

Exercise 2 shows that we can write $V = \bigoplus_{\ell \in \mathbb{Z}_{\geq 0}} V_{\ell}$, where

$$
V_{\ell} = \{ v \in V : L_0 v = (h + \ell)v \}
$$

is the $(h + \ell)$ -eigenspace of L_0 . Vectors in V_{ℓ} are called ℓ -level vectors. An ℓ -level vector $w \in V_{\ell}$ is called singular if it satisfies

$$
L_k w = 0 \qquad \forall k \in \{1, \ldots, \ell\}.
$$

Exercise 3. The goal of this and a later exercise is to derive the BPZ equation for the correlation functions of a null field at level 2 and relate them to SLE-theory. Fix the central charge $c \in \mathbb{C}$.

- (a) Using the commutation relations show that $w = L_{-1}v_{c,h}$ is a singular vector at level 1 iff $h=0.$
- (b) Show that the generic (up to scaling) two-level vector $w_{c,h} = (L_{-2} + a L_{-1}^2) v_{c,h}$ is singular if and only if

$$
h = h_{\pm} := \frac{1}{16} \left(5 - c \pm \sqrt{(c - 1)(c - 25)} \right) \quad \text{and} \quad a = a_{\pm} := \frac{-3}{2(2h_{\pm} + 1)}.
$$

(c) Writing $a_ = \frac{\kappa}{4}$ $\frac{\kappa}{4}$, show that c and h₋ can be expressed in terms of κ as $c = \frac{(3\kappa - 8)(6 - \kappa)}{2\kappa}$ $\frac{3(0-\kappa)}{2\kappa}$ and $h_{-}=\frac{6-\kappa}{2\kappa}$ $\frac{-\kappa}{2\kappa}$.