EXERCISES DAy 1

Exercise 1. (See figures below) In this and a later exercise, we will argue why SLE(6) is a natural
scaling limit for a percolation interface. Denote by A the hexagonal lattice, and let 2 be a rhombus
with corners p1,p2, p3, pa counterclockwise. Denote by Q° := QN SA the hezagonal §-discretization
of Q. Consider a site percolation on Q° with Dobrushin boundary conditions:

e (olor the hexagons on Sy blue, and the hexagons on Si,Ss2,S3 red.

e Color each interior hexagon independently either red or blue with equal probability.

Denote by 70 the interface between the blue and red hezagons started from the point p.
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(A) Rhombus Q and its hexagonal discretization Q° with (B) A sample of percolation on Q°. The highlighted inter-

Dobrushin boundary conditions. face is the curve 4°.

(a) An LR-crossing (UD-crossing) is a path of blue (red) hexagons from Sz to Si (S1 to S3).
Show that every configuration has either an LR or UD crossing, but not both. Find a

bijection between configurations with LR-crossings and UD-crossings. From this, conclude
that both events have equal probability equal to %:

P({There is an LR-crossing}) = P ({ There is a UD-crossing}) = 1/2.

LR-crossing

UD-crossing

(A) LR-crossing (B) UD-crossing

(b*) Show that ~0 is a curve from p‘f to pi, where p? is a vertez in Q0 closest to pj. Show that
70 hits the boundary Sy if and only if there is an LR-crossing.

(c) Assuming 79 has a conformally invariant scaling limit as § | 0, arque why it has to be an

SLE(k) curve in Q from py to ps for some x > 0. Hint: formulate and check a discrete
version of the domain Markov Property for ~4°.



The Virasoro algebra Uit is an infinite dimensional Lie algebra with generators Ly, k € Z and C
satisfying the commutation relations

1
—n(n? = 1)6, _mC, forn,mcZ,

[Ly, L] = (n —m) Ly + B

[L,,C] =0.
A Yirt-module V is a highest-weight module if
V =Dir VUe,h
where v, € V is a highest-weight vector of weight h € C and central charge ¢ € C which satisfies
the following relations:
Cvep = CUc s Lovey, = hvep, Lyvep =0 Vn >0,
Such a module admits a PBW-basis
V=span{L_p, ...L_p,vcp|n1 >ng>--->n,>0k€Z>o}

Exercise 2. Show that the Lo eigenvalue of a given basis vector v = L_p, ... L_y, v, € V is given

as follows
k
Lov = (h + an> V.

=1

Exercise 2 shows that we can write V' = @EEZ>0 Vi, where
Vi={veV:Lyw=(h+{)v}
is the (h + ¢)-eigenspace of Lg. Vectors in V; are called ¢-level vectors. An ¢-level vector w € Vj is
called singular if it satisfies
Lyw =20 Vk e {1,...,¢}.
Exercise 3. The goal of this and a later exercise is to derive the BPZ equation for the correlation

functions of a null field at level 2 and relate them to SLE-theory. Fix the central charge ¢ € C.
(a) Using the commutation relations show that w = L_jv.p, is a singular vector at level 1 iff
h=0.
(b) Show that the generic (up to scaling) two-level vector wep, = (L—g + aL®,) vy is singular
if and only if
B -3
2(2hg + 1)

(3/1782)11(67/{) and

1
h:hizzﬁ(5—ci (c—l)(c—25)) and a=ay :
(c) Writing a_ = %, show that c and h_ can be expressed in terms of k as ¢ =

_ 6—k
ho =85
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