
Exercises Day 1

Exercise 1. (See figures below) In this and a later exercise, we will argue why SLE(6) is a natural
scaling limit for a percolation interface. Denote by Λ the hexagonal lattice, and let Ω be a rhombus
with corners p1, p2, p3, p4 counterclockwise. Denote by Ωδ := Ω ∩ δΛ the hexagonal δ-discretization
of Ω. Consider a site percolation on Ωδ with Dobrushin boundary conditions:

• Color the hexagons on S4 blue, and the hexagons on S1, S2, S3 red.
• Color each interior hexagon independently either red or blue with equal probability.

Denote by γδ the interface between the blue and red hexagons started from the point p1.

(a) Rhombus Ω and its hexagonal discretization Ωδ with
Dobrushin boundary conditions.

(b) A sample of percolation on Ωδ. The highlighted inter-
face is the curve γδ.

(a) An LR-crossing (UD-crossing) is a path of blue (red) hexagons from S2 to S4 (S1 to S3).
Show that every configuration has either an LR or UD crossing, but not both. Find a
bijection between configurations with LR-crossings and UD-crossings. From this, conclude
that both events have equal probability equal to 1

2 :

P ({There is an LR-crossing}) = P ({There is a UD-crossing}) = 1/2.

(a) LR-crossing (b) UD-crossing

(b∗) Show that γδ is a curve from pδ1 to pδ4, where pδj is a vertex in Ωδ closest to pj. Show that

γδ hits the boundary S2 if and only if there is an LR-crossing.
(c) Assuming γδ has a conformally invariant scaling limit as δ ↓ 0, argue why it has to be an

SLE(κ) curve in Ω from p1 to p4 for some κ ≥ 0. Hint: formulate and check a discrete
version of the domain Markov Property for γδ.

Solution. (a) We show that if one does not have UD-crossing than one does have an LR-crossing
(the other case follows analogously). Suppose that there is no UD-crossing then there is no con-
nected paths of red hexagons connecting S1 and S3. But since there are only two colors there must
be a connected cluster of blue hexagons from S4 to S2. But this gives the existence of a LR-crossing.



Since there is either a LR or an UD-crossing it suffices to show that we can pair each LR crossing
with exactly one UD crossing. Before giving the proof, we advice the reader to check the image
below. Without loss of generality suppose that we are given a LR-crossing. First switch any color
in the interior of the rhombus. This gives a red LR-crossing. Next reflect the rhombus around the
straight line connecting pδ1 and pδ3, which yields a (uniquely determined) red UP-crossing. Checking
the image again we see that we can reverse this process for an UD-crossing and this finishes ((a)).

Figure 3. Starting with a LR crossing configuration after color swapping and re-
flecting we end up with one UD-crossing configuration. Also starting with a UD-
crossing we can reverse the process to get one LR-crossing.

(b∗) Since p1 and p4 are contained in the same boundary component of the cluster of blue hexagons
(denoted by C) containing S4, there exists a path γ̃δ from p1 to p4 along the boundary of C. In
particular, on the left side of γ̃δ we have blue hexagons from C, hence, since γ̃δ ⊂ ∂C, on the right
we must not have blue hexagons, hence they are red. This shows that γ̃δ is the interface between
blue and red hexagons started at p1, i.e. γ̃

δ = γδ. In particular, this implies that γδ ⊂ ∂C hits S2

if and only if ∂C intersects S2, which is equivalent of existence of LR-crossing.
(c) Recall that SLE(κ)-curves are characterized by conformal invariance and domain Markov prop-
erty. Hence, assuming conformal invariance of the scaling limit only the domain Markov property
needs to be checked. More precisely, denote by Λ(Ωδ, p1, p4) the law of the interface curves γδ

connecting p1 and p4. We say that the law of the interface satisfies the domain Markov property
if the following holds. Stop the exploration of the interface γ at any of its points p′ and call γ′ the
part of the interface starting at p1 up to p′. Now the domain Markov property holds if

Λ(Ωδ, p1, p4)
∣∣γ′ = Λ(Ωδ \ γ′, p′, p4)

in other words the conditional law of what remains to be discovered after p′ is the same as law of
the interface in the remaining slit domain Ωδ \ γ′. Therefore, conditioning γδ to γ′ is equivalent to
conditioning the percolation on Ωδ \ γ′ only to have blue hexagons on the left and red hexagons
on the right of γ′; the rest hexagons are colored independently as before. Therefore, the remaining
interface γδ \ γ′ has exactly the same law as Λ(Ωδ \ γ′, p′, p4).
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The Virasoro algebra Vir is an infinite dimensional Lie algebra with generators Lk, k ∈ Z and C
satisfying the commutation relations

[Ln, Lm] = (n−m)Ln+m +
1

12
n(n2 − 1)δn,−mC, for n,m ∈ Z,

[Ln, C] = 0.

A Vir-module V is a highest-weight module if

V = Vir vc,h

where vc,h ∈ V is a highest-weight vector of weight h ∈ C and central charge c ∈ C which satisfies
the following relations:

Cvc,h = cvc,h, L0vc,h = hvc,h, Lnvc,h = 0 ∀n > 0,

Such a module admits a PBW-basis

V = span{L−n1 . . . L−nk
vc,h | n1 ≥ n2 ≥ · · · ≥ nk > 0, k ∈ Z≥0}

Exercise 2. Show that the L0 eigenvalue of a given basis vector v = L−n1 . . . L−nk
vc,h ∈ V is given

as follows

L0v =

(
h+

k∑
i=1

ni

)
v.

Solution. We show this via induction on k. For k = 0 we have v = vc,h, so by assumption we
get L0v = hv, proving the base case. Now suppose that the claim holds for an arbitrary but fixed
k ∈ Z≥0 and denote v = L−n1 . . . L−nk+1

vc,h. Note that we have

L0L−n1 =
[
L0, L−n1

]
+ L−n1L0 = n1L−n1 + L−n1L0.

Using the calculation above one has

L0L−n1 . . . L−nk+1
= n1L−n1 . . . L−nk+1

vc,h + L−n1L0 L−n2 . . . L−nk+1
vc,h︸ ︷︷ ︸

:=w

.

Now using the induction hypothesis on w together with the identity v = L−n1w yields that

L0v = n1v + L−n1

(
h+

n+1∑
i=2

ni

)
w =

(
h+

n+1∑
i=1

)
v,

and this finishes the proof.

Exercise 2 shows that we can write V =
⊕

ℓ∈Z≥0
Vℓ, where

Vℓ = {v ∈ V : L0v = (h+ ℓ)v}

is the (h+ ℓ)-eigenspace of L0. Vectors in Vℓ are called ℓ-level vectors. An ℓ-level vector w ∈ Vℓ is
called singular if it satisfies

Lkw = 0 ∀k ∈ {1, . . . , ℓ}.

Exercise 3. The goal of this and a later exercise is to derive the BPZ equation for the correlation
functions of a null field at level 2 and relate them to SLE-theory. Fix the central charge c ∈ C.

(a) Using the commutation relations show that w = L−1vc,h is a singular vector at level 1 iff
h = 0.
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(b) Show that the generic (up to scaling) two-level vector wc,h =
(
L−2 + aL2

−1

)
vc,h is singular

if and only if

h = h± :=
1

16

(
5− c±

√
(c− 1)(c− 25)

)
and a = a± :=

−3

2 (2h± + 1)
.

(c) Writing a− = κ
4 , show that c and h− can be expressed in terms of κ as c = (3κ−8)(6−κ)

2κ and

h− = 6−κ
2κ .

Solution. (a) We already know by the previous exercise that L0w = (1 + h)w and so it is left to
determine h by the condition that w is singular iff

L1w = 0.

Using the commutator we rewrite as follows

L1L−1vc,h =
([
L1, L−1

]
+ L−1L1

)
vc,h = 0,

which from Virasoro algebra commutation relations is given by

2L0vc,h + L−1L1vc,h = 0.

Now using the conditions L0vc,h = hvc,h and Lnvc,h = 0 for n > 0 yields that w is singular iff

2hvc,h = 0,

and this yields that h = 0.
(b) We need to find all a, h ∈ C such that w satisfies the condition of being singular, i.e.

Lk

( (
L−2 + aL2

−1

)
vc,h
)
= 0 k ∈ {1, 2}.(1)

Recall that that for any k > 0 we have Lkvc,h = 0, hence we get

LkL−2vc,h = [L−2, Lk]vc,h + L−2 Lkvc,h︸ ︷︷ ︸
=0

=

(
(k + 2)Lk−2 −

C

2
δk,2

)
vc,h,

LkL
2
−1vc,h = [Lk, L

2
−1]vc,h + L2

−1 Lkvc,h︸ ︷︷ ︸
=0

= (L−1[Lk, L−1] + [Lk, L−1]L−1)vc,h

= (k + 1)(L−1Lk−1 + Lk−1L−1)vc,h

= (k + 1)(2L−1Lk−1 + [Lk−1, L−1])vc,h

= (k + 1)(2L−1Lk−1 + kLk−2)vc,h.

Plugging the above to the equation (1) for k = 1 and k = 2 we get(
3L−1 + 2a(2L−1L0 + L−1)

)
vc,h =0 (k = 1),(

4L0 −
C

2
+ 3a(2L−1L1 + 2L0)

)
vc,h = 0 (k = 2).

Recalling that under Virasoro action one has L1vc,h = 0, L0vc,h = hvc,h, and Cvc,h = cvc,h, the
above equations become (

3 + 2a(2h+ 1)
)
L−1vc,h = 0 (k = 1),(

4h− c

2
+ 6ah

)
vc,h = 0 (k = 2).
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Since L−1vc,h and vc,h are non-zero vectors, the coefficients in front of them must be zero for the
above equations to hold. Solving a and h in terms of c yields

h =
1

16

(
5− c±

√
(c− 1)(c− 25)

)
and a =

−3

2 (2h+ 1)
.

Thus we conclude (as expected) that there are two singular vectors h+, h− at level 2 that are given
by choosing the corresponding sign in the formula for h, namely

(2) w+ =

(
L−2 −

3

2 (h+ + 1)
L2
−1

)
vc,h+ ,

and

(3) w− =

(
L−2 −

3

2 (h− + 1)
L2
−1

)
vc,h− .

This finishes (b).
(c) is just a straightforward exercise of algebraic manipulation.
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