
1. Exercises Day 2

An SLE(κ)-curve γ on the upper half-plane H = {z ∈ C : ℑz > 0} can be described in terms of
mapping out functions, which are (properly normalized) conformal maps gt : Ht → H, where Ht is
the unbounded connected component of H \ γ[0, t]. With the so-called capacity parameterization,
gt satisfies the Loewner differential equation

∂tgt(z) =
2

gt(z)−Wt
,

where the driving function is Wt =
√
κBt, and B is the standard Brownian motion. The domain

Markov property together with conformal invariance can be used to show that for every s ≥ 0, the
curve γst := gs(γs+t)−Ws is also an SLE(κ) curve in H independent of γ[0, s].

The sets Kt := H \Ht are called hulls associated to γ. A swallowing time Tz of z ∈ H is the first
time instance γ[0, t] hits z or disconnects z from ∞ in H:

Tz = inf{t ≥ 0 : z ∈ Kt}.

Exercise 1. This exercise is continuation of Exercise 1 from day one. Let κ ∈ (4, 8) and x ∈ [0, 1].

(a) Let γ be an SLE(κ) curve starting from 0. Show that P (Tx ≤ T1) = 1.
(b) Consider the martingale Mt = P (Tx < T1 | γ[0, t]). Using properties of SLE(κ), argue that

Mt =

{
1 (Tx < T1) if t ≥ Tx ∧ T1,
F
(
gt(x)−Wt

gt(1)−Wt

)
if t < Tx ∧ T1,

where F (x) = P (Tx < T1).

Solution. (a) The curve γ disconnects 1 from ∞ at time T1. As γ starts at 0 and x ∈ [0, 1], by
topological reasons x also has to be disconnected from ∞ at or before the time T1 – if this was
not the case, γ should hug R in a neighbourhood of x in a sense that for some 0 ≤ s < t ≤ T1 we
have x ∈ γ(s, t) ⊂ R, which would imply Hu = Hs for u ∈ (s, t), and consequently ∂ugu(z) = 0 for
u ∈ (s, t), contradicting capacity parametrization. This shows that Tx ≤ T1 almost surely.
(b) If t ≥ Tx ∧ T1, the event Tx < T1 is already contained in Ft, hence we get

Mt|{t ≥ Tx ∧ T1} = P (Tx < T1|Ft ∩ {t ≥ Tx ∧ T1}) =

{
1, if Tx < T1,

0, otherwise,

which is just the indicator 1(Tx < T1). Next assume t < Tx ∧ T1. By the domain Markov property
and conformal invariance, s 7→ gt(γt+s) −Wt =: γts is an SLE(κ) curve independent of Ft. When
t < Tx ∧ T1, the point x is swallowed before 1 by γ if and only if gt(x) −Wt is swallowed before
gt(1)−Wt by γ

t. Writing T t
z := inf{s ≥ 0 : z ∈ Kt

s} the swallowing time of z by γt, we get

Mt|{t < Tx ∧ T1} = P (Tx < T1 | Ft ∩ {t < Tx ∧ T1})
= P (T t

gt(x)−Wt
< T t

gt(1)−Wt
| Ft ∩ {t < Tx ∧ T1}).

As γt is independent of Ft (and hence also of the event {t < Tx ∧ T1} ∈ Ft), we can drop the
conditioning on the RHS:

Mt|{t < Tx ∧ T1} = P (T t
gt(x)−Wt

< T t
gt(1)−Wt

).



By Brownian scaling of SLE(κ), the curve γ′s = (gt(1) − Wt)
−1γt(gt(1)−Wt)2s

is also SLE(κ) dis-

tributed. Writing T ′
z := inf{s ≥ 0 : z ∈ K ′

s} the swallowing time of z by γ′ we have T ′
z = (gt(1)−

Wt)
2T t

(gt(1)−Wt)−1z, so in particular T ′
z < T ′

w is equivalent with T t
(gt(1)−Wt)−1z < T t

(gt(1)−Wt)−1w for

every z, w ∈ H. Applying this to the above equation yields

Mt|{t < Tx ∧ T1} = P (T ′
gt(x)−Wt
gt(1)−Wt

< T ′
1).

Finally, the random variables (T ′
z)z∈H have the same joint law as (Tz)z∈H, so we can replace T ′ by

T to get

Mt|{t < Tx ∧ T1} = P (T gt(x)−Wt
gt(1)−Wt

< T1) = F

(
gt(x)−Wt

gt(1)−Wt

)
,

where

F (x) = P (Tx < T1).

This finishes (b).
A stochastic process Xt satisfying the following stochastic differential equation (SDE)

dXt = µtdt+ σtdBt

is a local martingale if and only if the finite variation part µt is zero: µt ≡ 0. If f : R2 → R is
a continuously twice differentiable function, then by Ito’s formula the process f(t,Xt) satisfies the
following SDE:

df(t,Xt) =
(
∂1 + µt∂2 +

σ2t
2
∂22

)
f(t,Xt)dt+

σt
2
∂2f(t,Xt)dBt.(1)

Exercise 2.

(a) Under the assumption F ∈ C2([0, 1]), apply Equation (1) on F (gt(x)−Wt

gt(1)−Wt
) to conclude that

for Mt to be a local martingale, F should satisfy the differential equation

(2) F ′(x)
(
2
(
x−1 − x

)
+ κ (x− 1)

)
+
κ

2
F ′′(x) (x− 1)2 = 0, x ∈ (0, 1).

(b) Solve for F , and then (use the optional stopping theorem (E[MTx ] = E[M0]) to) deduce that

P (Tx < T1) =

´ 1
x (1− u)

8
κ
−2u−

4
κdu´ 1

0 (1− u)
8
κ
−2u−

4
κdu

.

(c) Show that P (T1/2 < T1) =
1
2 if and only if κ = 6.

(d∗) Let φ : Ω → H be the conformal map from the rhombus Ω to the upper half plane H such
that when extended continuously on the boundary, φ satisfies

φ(p1) = 0, φ(p3) = 1, φ(p4) = ∞.

Show that φ(p2) =
1
2 .

(e) Conclude that the only possible conformally invariant scaling limit for the critical percola-
tion interface from Exercise 1 is SLE(6). Hint: How does an LR-crossing crossing from
Exercise 1 relate to P (Tx < T1)?

Solution. (a) Suppose that F ∈ C2 ((0, 1)), and write ϕ(s, u) = gs(x)−u
gs(1)−u , and f(s, u) = F (ϕ(s, u)).

By Equation (1)f(t,Wt) satisfies the following SDE:

df(t,Wt) =
(
∂1 +

κ

2
∂22

)
f(t,Wt)dt+

κ

2
∂2f(t,Wt)dBt.
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For Mt to be a martingale, the finite variation part of f(t,Wt) has to vanish, which happens if f
satisfies the following PDE: (

∂1 +
κ

2
∂22

)
f(s, u) = 0.

By applying the chain rule to f(s, u) = F (ϕ(s, u)) we can write the above differential equation in
terms of F and ϕ as follows:

F ′(ϕ(s, u))
(
∂s ϕ(s, u) +

κ

2
∂2u ϕ(s, u)

)
+
κ

2
F ′′(ϕ(s, u)) (∂u ϕ(s, u) )

2 = 0.

Calculate the following partial derivatives.

∂sϕ(s, u) =

2
gs(x)−u (gs(1)− u)− (gs(x)− u) 2

gs(1)−u

(gs(1)− u)2
=

2
(
ϕ(s, u)−1 − ϕ(s, u)

)
(gs(1)− u)2

.

∂uϕ(s, u) =
gs(x)− gs(1)

(gs(1)− u)2
=
gs(x)− u+ u− gs(1)

(gs(1)− u)2
=

1

(gs(1)− u)
(ϕ(s, u)− 1)

∂2uϕ(s, u) =
2 (gs(x)− u)

(gs(1)− u)3
− 2

(gs(1)− u)2
=

2

(gs(1)− u)2
(ϕ(s, u)− 1)

Plugging in the partial derivatives from above yields that Mt on {t < min(Tx, T1)} is a local
martingale on iff for all ϕ ∈ (0, 1) one has

F ′(ϕ)

(
2

(
ϕ−1 − ϕ

)
(gt(1)−Wt)2

+
κ

2

2

(gt(1)−Wt)2
(ϕ− 1)

)
+
κ

2
F ′′(ϕ)

1

(gt(1)−Wt)2
(ϕ− 1)2 = 0.

which after multiplication by (gt(1)−Wt)
2 from both sides and rearranging becomes

−4

κ

(
ϕ−1 − ϕ

(ϕ− 1)2
+

κ

2(ϕ− 1)

)
=
F ′′(ϕ)

F ′(ϕ)
=

d

dϕ
log(F ′(ϕ)).

Integrating with respect to ϕ and exponentiating gives

F ′(ϕ) = C (1− ϕ)
8

κ−2ϕ−
4
κ ,

which after another integration becomes

F (ϕ) = C

ˆ 1

ϕ
(1− u)

8
κ
−2u−

4
κdu+B.

Applying our initial condition F (1) = 0 yields that B = 0 and further using F (0) = 1 one has

C = (
´ 1
0 (1− u)

8
κ
−2u−

4
κ du−1), which finally concludes that

F (ϕ) =

´ 1
ϕ (1− u)

8
κ
−2u−

4
κdu´ 1

0 (1− u)
8
κ
−2u−

4
κdu

.

This concludes (a).
(b) Note that we don’t a priori know that the function F in the form of the martingale Mt is twice

differentiable, so we need to work “backwards”. Let ϕt =
gt(x)−Wt

gt(1)−Wt
, and

M̃t =

´ 1
ϕt
(1− u)

8
κ
−2u−

4
κdu´ 1

0 (1− u)
8
κ
−2u−

4
κdu

.

By the previous part, M̃t is is a martingale up to the stopping time T = inf{t ≥ 0 : ϕt ∈ {0, 1}}. It
is a fact that

ϕT = 0 ⇐⇒ Tx < T1, and ϕT = 1 ⇐⇒ Tx = T1,
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thus we get M̃T = 1(Tx < T1). As ϕ0 = x, by optional stopping theorem we thus get

P (Tx < T1) = E[M̃T ] = E[M̃0] =

´ 1
x (1− u)

8
κ
−2u−

4
κdu´ 1

0 (1− u)
8
κ
−2u−

4
κdu

.

(c) By the previous exercise, it suffices to show that F (1/2) = 1/2, which by the initial condition
F (0) = 1 is equivalent to showing F (1/2) = F (0)− F (1/2), hence we are going to prove that

F (12)

F (0)− F (12)
= 1 iff κ = 6.

Observe that

F (12)

F (0)− F (12)
=

´ 1
1/2(1− u)

8
κ
−2u−

4
κdu´ 1/2

0 (1− u)
8
κ
−2u−

4
κdu

=

´ 1/2
0 u

8
κ
−2(1− u)−

4
κdu´ 1/2

0 (1− u)
8
κ
−2u−

4
κdu

,

where in the last equality we made the change of variables u 7→ 1 − u to the top integral. To
compare the integrand of the integrals, observe that for every u ∈ (0, 12 ] we have

u
8
κ
−2(1− u)−

4
κ

(1− u)
8
κ
−2u−

4
κ

=

(
u

1− u

) 12
κ
−2


> 1, if 12

κ − 2 < 0,

= 1, if 12
κ − 2 = 0,

< 1, if 12
κ − 2 > 0.

From this we see that one of the integrands (hence the whole integral) is strictly greater than the
other, unless 12

κ − 2 = 0, which happens only for κ = 6. Since F (0) = 1, this implies that for only

κ = 6 we do get F (12) =
1
2 .

(d∗) We give a complex analysis argument. Denote by ℓ the vertical line connecting p2 and p4 in
Ω and let Γℓ : Ω → Ω be the reflections along ℓ. This is an anticonformal map fixing ℓ, hence ℓ is
the hyperbolic geodesic from p2 to p4 in Ω. Since conformal maps preserve hyperbolic geodesics,
φ(ℓ) is the hyperbolic geodesic in H from φ(p2) to φ(p4) = ∞, which is simply the vertical line
L = {φ(p2) + iy | y > 0}. The map ψ = ϕ−1 ◦ Γℓ ◦ ϕ is anticonformal and fixes all points in L,
therefore ψ is the reflection of H along L. Since we also have (after extending each map continuously
to the boundary)

ψ(1) = ψ(φ(p3)) = φ(Γℓ(p3)) = φ(p1) = 0,

we conclude that φ(p2) =
1
2 .

(e) By exercise (1(c)) we already know that if the scaling limit of the interface is conformally invari-
ant it has to correspond to some SLE(κ), which we now denote by γ. Recall that in exercise (1(b)),
we showed that the percolation admits a LR-crossing with probability 1/2 and occurs iff γδ hits S2.
Therefore, in the limit as δ ↓ 0, γ starts at p1, hits S2 and terminates at p4 with probability 1/2.
Using conformal invariance of SLE(κ) the probability of this event is the same as γ starting from
0, hitting between 1/2 and 1 and terminating at ∞. This event is given by {T1/2 < T1}, which has
probability 1/2 iff κ = 6. This finishes (e).
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Figure 1. The event of percolation having an LR crossing on the left, while having
the corresponding SLE event on the right.

The Verma module Mc,h of weight h and central charge c is the unique (up to isomorphism)
highest weight module satisfying the following universality property: if V is another (non-zero)
highest weight module of weight h and central charge c, then (unless V ∼= Mc,h) there exists a
singular vector w ∈Mc,h such that we have an isomorphism

V ∼=Mc,h/(Virw)

sending a highest weight vector of V to a highest weight vector of Mc,h.

Physics postulate. Suppose we have a family (Φι(z))ι∈I of primary fields with conformal weights
∆ι. Physics arguments show that each Φι(z) is a highest weight vector of some irreducible Verma
module Vc,∆ι . The Virasoro action on Φι(z) manifests in the level of correlation functions as

⟨Φι1(z1) . . .Φιn(zn)L
m
−kΦι(z)⟩ = (L

(z)
−k)

m⟨Φι1(z1) . . .Φιn(zn)Φι(z)⟩,(3)

for ι1, . . . , ιn ∈ I, and k,m ∈ Z≥0, where L(z)
−k is a first order differential operator given by

L(z)
−k =

n∑
i=1

(
(k − 1)

(zi − z)k
∆ιi −

1

(zi − z)k−1

∂

∂zi

)
.

Exercise 3. This is continuation of Exercises 2 and 3 from day 1. Let (Φι(z))ι∈I be a family
of primary fields with central charge c and conformal weights ∆ι. Denote by Vc,∆ι the Vir-module
generated by Φι. Assume Φ(z) is a primary field from the collection with conformal weight ∆ = h−,
where h− is as in Exercise 3.

(a) Use Exercise 2 to show that the lowest level at which the Verma module Mc,∆ has singular
vectors is 2. Conclude that Vc,∆ ∼=Mc,∆/(Virwc,∆), where wc,∆ is the 2-level singular vector
from Exercise 3.

(b) Assuming that the correlation function

Fι1,...,ιn(z1, . . . , zn, z) = ⟨Φι1(z1) . . .Φιn(zn)Φ(z)⟩

satisfies Equations (3), find a differential operator D expressed in terms of L(z)
−k such that

the following differential equation is satisfied:

DFι1,...,ιn(z1, . . . , zn, z) = 0.(4)
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Hint: note that ⟨·⟩ is a linear operator.
(c) Assuming translation invariance, i.e.

Fι1,...,ιn(z1 + λ, . . . , zn + λ, z + λ) = Fι1,...,ιn(z1, . . . , zn, z),

show that equation (4) becomes the following BPZ equation:[
− 3

2 (2∆ + 1)

∂2

∂z2
−

n∑
i=1

(
1

zi − z

∂

∂zi
− ∆ιi

(zi − z)2

)]
Fι1,...,ιn(z1, . . . , zn, z) = 0.(5)

(d) Consider the parameterization c = (3κ−8)(6−κ)
2κ from Exercise 3(c). Assuming ∆ιi = h− =

6−κ
2κ for every i, write down the BPZ-equation (5) in terms of κ.

Solution. (a) Since ∆ ̸= 0, there are no 1-level singular vectors in Mc,∆, while wc,∆ = (L−2 +
a−L

2
−1)vc,∆ is the unique singular level vector of level 2 in Mc,∆. This shows the first claim. Since

Mc,∆ contains a 2-level singular vector, it is not irreducible, so in particular Vc,∆ ̸= Mc,∆. By the
universality property of Verma modules, there thus exists a singular vector w ∈ Mc,∆ such that
Jc,∆ ∼=Mc,∆/(Virw). Since singular vectors of highest-weight modules generate non-trivial ideals,
irreduciblity of Jc,∆ implies wc,∆ ∈ Virw, and since wc,∆ is the lowest level singular vector ofMc,∆,
we get w = wv,∆, proving the second claim.
(b) Under the isomorphism Vc,∆ ∼=Mc,∆/(Virwc,∆) we identify Φ(z) ∼= vc,∆, thus we get

(L−2 + a−L
2
−1)Φ(z)

∼= (L−2 + a−L
2
−1)vc,∆ = wc,∆ ∈ Virwc,∆,

therefore (L−2 + a−L
2
−1)Φ(z) = 0. By linearity of ⟨·⟩, we thus get

0 = ⟨0⟩ = ⟨Φι1(z) . . .Φιn(z)(L−2 + a−L
2
−1)Φ(z)⟩ = (L(z)

−2 + a−(L−1
−1)

2)⟨Φι1(z) . . .Φιn(z)Φ(z)⟩.

The differential operator D = L(z)
−2 + a−(L−1

−1)
2 thus satisfies (4). Recalling that a− = − 3

2(2h−+1)

and ∆ = h−, using explicit formulas for L−k we can write

D = − 3

2 (2h1,2 + 1)

(
n∑

i=1

∂

∂zi

)2

−
n∑

i=1

(
1

zi − z

∂

∂zi
− ∆ιi

(zi − z)2

)
(c) Differentiating the translation invariance equation w.r.t. λ and evaluating at λ = 0 yields[ n∑

i=1

∂

∂zi
+

∂

∂z

]
Fι1,...,ιn(z1, . . . , zn, z) = 0,

hence when acting on Fι1,...,ιn , we have
n∑

i=1

∂

∂zi
= − ∂

∂z
.

Doing this substitution to the equation in previous parts gives (5).
(d) Using the parametrization we get the following second order PDE:[

κ

2

∂2

∂z2
−

n∑
i=1

(
1

zi − z

∂

∂zi
− 2∆ιi

(zi − z)2

)]
Fι1,...,ιn,ι(z1, . . . , zn, z) = 0,

and this finishes the exercise. Note that this is the equation for the drift terms in the drivers of
interacting SLEs.
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