1. EXERCISES DAY 2

An SLE(k)-curve 7 on the upper half-plane H = {z € C : Sz > 0} can be described in terms of
mapping out functions, which are (properly normalized) conformal maps ¢; : H; — H, where Hy is
the unbounded connected component of H \ v[0,¢]. With the so-called capacity parameterization,
gt satisfies the Loewner differential equation

Orgt(z) = 7z =Wy

where the driving function is Wy = y/kBy, and B is the standard Brownian motion. The domain
Markov property together with conformal invariance can be used to show that for every s > 0, the
curve ;= gs(7ys+t) — Ws is also an SLE(k) curve in H independent of ][0, s].

The sets K; := H \ H; are called hulls associated to 7._A swallowing time T, of z € H is the first
time instance [0, ¢] hits z or disconnects z from oo in H:

T.=inf{t >0:z € K;}.

Exercise 1. This exercise is continuation of Exercise 1 from day one. Let k € (4,8) and x € [0, 1].

(a) Let ~y be an SLE(k) curve starting from 0. Show that P(T, <Ty) = 1.
(b) Consider the martingale My = P (T, < 11 | ¥[0,t]). Using properties of SLE(k), argue that

1(Tx<T1) ift > T, N1,
M= p (22w ift <Ty AT,
gt(l)_Wt x 1,

where F(x) = P(T, < Ty).

Solution. (a) The curve 7 disconnects 1 from oo at time Tj. As v starts at 0 and x € [0, 1], by
topological reasons z also has to be disconnected from oo at or before the time 77 — if this was
not the case, v should hug R in a neighbourhood of z in a sense that for some 0 < s <t < T} we
have x € y(s,t) C R, which would imply H, = H, for u € (s,t), and consequently 9,g,(z) = 0 for
u € (s,t), contradicting capacity parametrization. This shows that T,, < T} almost surely.

(b) If t > T,, ATy, the event T, < T} is already contained in F, hence we get

1, if T, <T,

0, otherwise,

which is just the indicator 1(7,, < T7). Next assume ¢t < T A T;. By the domain Markov property
and conformal invariance, s — g¢(744+5s) — Wi =: 4% is an SLE(k) curve independent of F;. When
t < T, AT, the point z is swallowed before 1 by ~ if and only if g,(x) — W; is swallowed before
gt(1) — Wy by ~*. Writing T? :=inf{s > 0: z € K!} the swallowing time of z by 7!, we get
]Vfth <Tp A Tl} = P(Tx < T ‘]:t N {t < T, /\Tl})
- P(Tgt(l‘)*Wt < Tgt(l)*Wt |]:t N {t < T.E AN Tl})

As 7' is independent of F; (and hence also of the event {¢t < T, ATi} € F;), we can drop the
conditioning on the RHS:

M {t < Ty NT1} = P(Tgt(m)fwt < Tgtt(l)fwt).



By Brownian scaling of SLE(k), the curve 7, = (g:(1) — Wt)_17€g,(1)—wf)23 is also SLE(k) dis-
tributed. Writing 77 := inf{s > 0: z € K.} the swallowing time of z by 7' we have T, = (g;(1) —
Wt)QT(tgt(l),%)qza so in particular 77 < T, is equivalent with T(tgt(l)fW’t)*lz < T(tgt(l)fwt)*lw for
every z,w € H. Applying this to the above equation yields

Mil{t <To NT1} = P(Tg,0)-w, <T1).
g¢ (1) =Wy
Finally, the random variables (17), g have the same joint law as (7%),.g, so we can replace T" by
T to get
ge(x) — Wi
Mt <Tp NTh} = P(Tgy0)-wy, <Th) =F| —VFF— |,
HE<TATL}=Pllggog < 1) <gt(1) - Wt)

where

F(x)=P(T, <Ty).
This finishes (b).
A stochastic process X; satisfying the following stochastic differential equation (SDE)
dXt = ,U,tdt + O'tdBt

is a local martingale if and only if the finite variation part ju; is zero: u; = 0. If f : R> — R is
a continuously twice differentiable function, then by Ito’s formula the process f(¢, X;) satisfies the
following SDE:

2
(1) Af (1, X2) = (01 + uds + 708 ) £ (t, Xo)dt + T 0o f (1, X)dB.

Exercise 2.
(a) Under the assumption F € C*([0,1]), apply Equation (1) on F(gt(w%Wt) to conclude that

gt(1)—Wy
for My to be a local martingale, F' should satisfy the differential equation
2) Flo)2(@ ' —2)+r@—1) + gF”(az) (z—12%=0, z€(0,1).

(b) Solve for F, and then (use the optional stopping theorem (E[Mr,| = E[My]) to) deduce that
fxl(l - u)%_2u_%du
fol(l - u)%_Qu_%du'

(c) Show that P(Ty ), <T1) = % if and only if k = 6.
(d*) Let ¢ : Q — H be the conformal map from the rhombus 2 to the upper half plane H such
that when extended continuously on the boundary, ¢ satisfies

P(T, <T) =

ep1) =0,  @(p3) =1,  o(ps) = oo.

Show that ¢(p2) = 1.

(e) Conclude that the only possible conformally invariant scaling limit for the critical percola-
tion interface from Exercise 1 is SLE(6). HINT: How does an LR-crossing crossing from
Ezercise 1 relate to P(T, < T1)?

Solution. (a) Suppose that F' € C?((0,1)), and write ¢(s,u) = ngg:z, and f(s,u) = F(¢(s,u)).
By Equation (1) f(t, W;) satisfies the following SDE:

A (1 We) = (91 -+ 508) 1 (1. We)dt + 5021 (1. Wy)dB.
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For M; to be a martingale, the finite variation part of f(t, W;) has to vanish, which happens if f
satisfies the following PDE:

(81 + gag)f(s,u) —0.

By applying the chain rule to f(s,u) = F(¢(s,u)) we can write the above differential equation in
terms of I’ and ¢ as follows:

F'(6(s,w)) (05 6(s,w) + 5 02 6(s.u)) + TF"(6(s,u)) (9 #(s,u))” = 0.
Calculate the following partial derivatives.

PPN i = G Bk C24 G ) i 1 G Bt GO )

(g5(1) — u)? (9s(1) — u)?
(@) —g(1) _ g@)—utu—g) 1 o
A Y e A 1 e Bl PR (Y By AL
, 2Ug(x)—w) 2 2 o
L e PR Gy B Rl PGy R cl PGy R P )

Plugging in the partial derivatives from above yields that M; on {t < min(7,,71)} is a local
martingale on iff for all ¢ € (0, 1) one has

/ (¢71 - (b) " 2 - Ko 1 2
F) (2 @ - W T2 m - ¢ ”) PO m om0 =0
which after multiplication by (g;(1) — W})? from both sides and rearranging becomes
o -9 K _F'(¢) _d
-+ (5= 2o = T ~ ag RO

Integrating with respect to ¢ and exponentiating gives

Fl(¢)=C(1—¢)rr¢ s,

which after another integration becomes
! 8_o _4
F(¢p)=C | (1—-u)r “u =du—+ B.
¢

Applying our initial condition F'(1) = 0 yields that B = 0 and further using F'(0) = 1 one has
= (fol(l - u)%_Qu_% du~1), which finally concludes that

4
2y wdu

N2
Floof oo

o _4 -
2y~ wdu

This concludes (a).

(b) Note that we don’t a priori know that the function F' in the form of the martingale M; is twice

(z) =Wt

differentiable, so we need to work “backwards”. Let ¢; = Zt( =W, and

L s
N (1 —u)=2u ~rdu
ity = Je s

. fo (1 —u)

By the previous part, M; is is a martingale up to the stopping time 7' = inf{t > 0: ¢; € {0,1}}. It
is a fact that

ufﬁdu

or =0 <= T, <17, and or=1 <= T, =17,
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thus we get My = 1(T,, < T1). As ¢y = x, by optional stopping theorem we thus get
1 8_o _4
P(T, < T)) = E[My] = E[Mp] = fwl( W ~du
Jo @ =u)x?uxdu

(c) By the previous exercise, it suffices to show that F'(1/2) = 1/2, which by the initial condition
F(0) =1 is equivalent to showing F(1/2) = F'(0) — F(1/2), hence we are going to prove that

F(L
%1 =1 iff k= 6.
Observe that
8 4
F(z) — f11/2<1 —w)ruwdu f01/2 u%*Q(l — u)fédu

F(O) - F(%) a f01/2(1 — u)%72u7%du a 01/2(1 — u)%f%fédu7

where in the last equality we made the change of variables v +— 1 — u to the top integral. To

compare the integrand of the integrals, observe that for every u € (0, %] we have

12_, >1, ifi2-2<o,

-
—u) x u K
o — (1_u> =1, if2_-2=0y,
(1_“)“ v <1, if2-2>0,
From this we see that one of the integrands (hence the whole integral) is strictly greater than the
other, unless 12 — 2 = 0, which happens only for x = 6. Since F(0) = 1, this implies that for only

k=6 we do get F(i)y=1

(d*) We give a complex analysis argument. Denote by ¢ the vertical line connecting py and p4 in
Q and let I'y: Q — Q be the reflections along ¢. This is an anticonformal map fixing ¢, hence £ is
the hyperbolic geodesic from po to py in §2. Since conformal maps preserve hyperbolic geodesics,
() is the hyperbolic geodesic in H from ¢(p2) to ¢(ps) = oo, which is simply the vertical line
L = {o(p2) +iy|y > 0}. The map 1 = ¢! oy 0 ¢ is anticonformal and fixes all points in L,
therefore 1) is the reflection of H along L. Since we also have (after extending each map continuously
to the boundary)

¥(1) = (p(p3)) = ¢(Te(p3)) = ¢(p1) = 0,

we conclude that ¢(ps) = 1.

(e) By exercise (1(c)) we already know that if the scaling limit of the interface is conformally invari-
ant it has to correspond to some SLE(k), which we now denote by ~. Recall that in exercise (1(b)),
we showed that the percolation admits a LR-crossing with probability 1/2 and occurs iff 4% hits So.
Therefore, in the limit as § | 0, v starts at pj, hits Sy and terminates at ps with probability 1/2.
Using conformal invariance of SLE(k) the probability of this event is the same as v starting from
0, hitting between 1/2 and 1 and terminating at co. This event is given by {7} /2 < T1}, which has

probability 1/2 iff k = 6. This finishes (e).



R
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F1GURE 1. The event of percolation having an LR crossing on the left, while having
the corresponding SLE event on the right.

The Verma module M. of weight h and central charge c is the unique (up to isomorphism)
highest weight module satisfying the following universality property: if V' is another (non-zero)
highest weight module of weight h and central charge c, then (unless V' = M, ) there exists a
singular vector w € M} such that we have an isomorphism

V =M.,/ (Bicw)
sending a highest weight vector of V' to a highest weight vector of M, y.

Physics postulate. Suppose we have a family (®,(z)),c; of primary fields with conformal weights
A,. Physics arguments show that each ®,(z) is a highest weight vector of some irreducible Verma
module V. a,. The Virasoro action on ®,(z) manifests in the level of correlation functions as

(3) (@ (1) - B0, (20) LT u(2)) = (LE)™ (@0 (1) - o, (20)u(2)),
for ¢1,...,tp € I, and k,m € Z>(, where E(f,l is a first order differential operator given by
" E—1) 1 0
£ = ( A, — — .
-k ; <(zZ —2)F T (z—2)k 1 0z

Exercise 3. This is continuation of Exercises 2 and 3 from day 1. Let (®,(2)).,er be a family
of primary fields with central charge c and conformal weights A,. Denote by V. a, the Uir-module
generated by ®,. Assume ®(z) is a primary field from the collection with conformal weight A = h_,
where h_ is as in FExercise 3.

(a) Use Exercise 2 to show that the lowest level at which the Verma module M. A has singular
vectors is 2. Conclude that Vo o =2 M a/(Bitwe a), where we a is the 2-level singular vector
from Ezxercise 3.

(b) Assuming that the correlation function

Foin(Z1, oo y2n,2) = (D, (21) ... @y, (20) (2))

satisfies Equations (3), find a differential operator D expressed in terms of L(_Z,)c such that
the following differential equation is satisfied:
(4) DF, . ..(#1,...,2n,2) =0.
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Hint: note that (-) is a linear operator.
(c) Assuming translation invariance, i.e.

Fooomzi+ XA o+ N2+ N)=F, . (21,..., 2, 2),
show that equation (4) becomes the following BPZ equation:

3.9 O 1 9 A,
5 — Ay — - : F, e =0.
5) 2(2A+1) 02> (zi — 20z (% — z)2) ] penin (L5 2, 2)
(d) Consider the parameterization ¢ = % from Ezercise 3(c). Assuming A,, = h_ =

62_—: for every i, write down the BPZ-equation (5) in terms of k.

Solution. (a) Since A # 0, there are no 1-level singular vectors in M. A, while wea = (L2 +
a_L2_1)UC7A is the unique singular level vector of level 2 in M. A. This shows the first claim. Since
M. A contains a 2-level singular vector, it is not irreducible, so in particular V. A # M. . By the
universality property of Verma modules, there thus exists a singular vector w € M. A such that
Je.n = Mo a/(Uirw). Since singular vectors of highest-weight modules generate non-trivial ideals,
irreduciblity of J. A implies w, A € Virw, and since w, A is the lowest level singular vector of M, A,
we get w = w, A, proving the second claim.

(b) Under the isomorphism V. A = M. a/(Ditw, ) we identify ®(z) = v, a, thus we get

(Lo +a_L2)®(2) = (Lo +a_L?))vea = wen € Vivwen,
therefore (L_3 + a_L%,)®(z) = 0. By linearity of (-), we thus get

0=(0) = (®,,(2) ... 0, (2)(Loz + a_L2)®(2)) = (L) + a_ (L2 (D,, (2) ... By, (2)®(2)).

The differential operator D = E(_Z% + a_(L£Z])? thus satisfies (4). Recalling that a_ = —m

and A = h_, using explicit formulas for £_; we can write

2
3 "0 - 1 0 A,
D:—i JR— I - ?
2(2h12+1) (; 821') ; <zZ — 20z (z —z)2>

(c) Differentiating the translation invariance equation w.r.t. A and evaluating at A = 0 yields

"0 0
I:;azl—i_az}FLl 77777 Ln(Zl,...,Zn,Z)—O,

hence when acting on F,, ., we have

1=
Doing this substitution to the equation in previous parts gives (5).
(d) Using the parametrization we get the following second order PDE:

K0 L 1 0 27,
2022 —

1=

and this finishes the exercise. Note that this is the equation for the drift terms in the drivers of
interacting SLEs.



	1. Exercises Day 2

