1. EXERCISES DAY 2

An SLE(κ)-curve γ on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \Im z > 0\}$ can be described in terms of mapping out functions, which are (properly normalized) conformal maps $g_t : H_t \to \mathbb{H}$, where H_t is the unbounded connected component of $\mathbb{H} \setminus \gamma[0, t]$. With the so-called capacity parameterization, g_t satisfies the Loewner differential equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}$$

where the driving function is $W_t = \sqrt{\kappa}B_t$, and B is the standard Brownian motion. The domain Markov property together with conformal invariance can be used to show that for every $s \ge 0$, the curve $\gamma_t^s := g_s(\gamma_{s+t}) - W_s$ is also an SLE(κ) curve in \mathbb{H} independent of $\gamma[0, s]$.

The sets $K_t := \overline{\mathbb{H} \setminus H_t}$ are called hulls associated to γ . A swallowing time T_z of $z \in \overline{\mathbb{H}}$ is the first time instance $\gamma[0, t]$ hits z or disconnects z from ∞ in $\overline{\mathbb{H}}$:

$$T_z = \inf\{t \ge 0 : z \in K_t\}.$$

Exercise 1. This exercise is continuation of Exercise 1 from day one. Let $\kappa \in (4, 8)$ and $x \in [0, 1]$.

- (a) Let γ be an SLE(κ) curve starting from 0. Show that $P(T_x \leq T_1) = 1$.
- (b) Consider the martingale $M_t = P(T_x < T_1 | \gamma[0, t])$. Using properties of $SLE(\kappa)$, argue that

$$M_t = \begin{cases} \mathbf{1} \left(T_x < T_1 \right) & \quad \text{if } t \geq T_x \wedge T_1, \\ F \left(\frac{g_t(x) - W_t}{g_t(1) - W_t} \right) & \quad \text{if } t < T_x \wedge T_1, \end{cases}$$

where $F(x) = P(T_x < T_1)$.

A stochastic process X_t satisfying the following stochastic differential equation (SDE)

$$dX_t = \mu_t dt + \sigma_t dB_t$$

is a local martingale if and only if the finite variation part μ_t is zero: $\mu_t \equiv 0$. If $f : \mathbb{R}^2 \to \mathbb{R}$ is a continuously twice differentiable function, then by Ito's formula the process $f(t, X_t)$ satisfies the following SDE:

(1)
$$df(t, X_t) = \left(\partial_1 + \mu_t \partial_2 + \frac{\sigma_t^2}{2} \partial_2^2\right) f(t, X_t) dt + \frac{\sigma_t}{2} \partial_2 f(t, X_t) dB_t.$$

Exercise 2.

(a) Under the assumption $F \in C^2([0,1])$, apply Equation (1) on $F(\frac{g_t(x)-W_t}{g_t(1)-W_t})$ to conclude that for M_t to be a local martingale, F should satisfy the differential equation

(2)
$$F'(x)\left(2\left(x^{-1}-x\right)+\kappa\left(x-1\right)\right)+\frac{\kappa}{2}F''(x)\left(x-1\right)^2=0, \qquad x \in (0,1).$$

(b) Solve for F, and then (use the optional stopping theorem $(\mathbb{E}[M_{T_x}] = \mathbb{E}[M_0])$ to) deduce that

$$P(T_x < T_1) = \frac{\int_x^1 (1-u)^{\frac{8}{\kappa}-2} u^{-\frac{4}{\kappa}} du}{\int_0^1 (1-u)^{\frac{8}{\kappa}-2} u^{-\frac{4}{\kappa}} du}.$$

- (c) Show that $P(T_{1/2} < T_1) = \frac{1}{2}$ if and only if $\kappa = 6$.
- (d^{*}) Let $\varphi : \Omega \to \mathbb{H}$ be the conformal map from the rhombus Ω to the upper half plane \mathbb{H} such that when extended continuously on the boundary, φ satisfies

$$\varphi(p_1) = 0, \qquad \varphi(p_3) = 1, \qquad \varphi(p_4) = \infty.$$

Show that $\varphi(p_2) = \frac{1}{2}$.

(e) Conclude that the only possible conformally invariant scaling limit for the critical percolation interface from Exercise 1 is SLE(6). HINT: How does an LR-crossing crossing from Exercise 1 relate to $P(T_x < T_1)$?

The Verma module $M_{c,h}$ of weight h and central charge c is the unique (up to isomorphism) highest weight module satisfying the following universality property: if V is another (non-zero) highest weight module of weight h and central charge c, then (unless $V \cong M_{c,h}$) there exists a singular vector $w \in M_{c,h}$ such that we have an isomorphism

$$V \cong M_{c,h}/(\mathfrak{Vir}\,w)$$

sending a highest weight vector of V to a highest weight vector of $M_{c,h}$.

Physics postulate. Suppose we have a family $(\Phi_{\iota}(z))_{\iota \in I}$ of primary fields with conformal weights Δ_{ι} . Physics arguments show that each $\Phi_{\iota}(z)$ is a highest weight vector of some irreducible Verma module $V_{c,\Delta_{\iota}}$. The Virasoro action on $\Phi_{\iota}(z)$ manifests in the level of correlation functions as

(3)
$$\langle \Phi_{\iota_1}(z_1) \dots \Phi_{\iota_n}(z_n) L^m_{-k} \Phi_{\iota}(z) \rangle = (L^{(z)}_{-k})^m \langle \Phi_{\iota_1}(z_1) \dots \Phi_{\iota_n}(z_n) \Phi_{\iota}(z) \rangle,$$

for $\iota_1, \ldots, \iota_n \in I$, and $k, m \in \mathbb{Z}_{\geq 0}$, where $\mathcal{L}_{-k}^{(z)}$ is a first order differential operator given by

$$\mathcal{L}_{-k}^{(z)} = \sum_{i=1}^{n} \left(\frac{(k-1)}{(z_i - z)^k} \Delta_{\iota_i} - \frac{1}{(z_i - z)^{k-1}} \frac{\partial}{\partial z_i} \right).$$

Exercise 3. This is continuation of Exercises 2 and 3 from day 1. Let $(\Phi_{\iota}(z))_{\iota \in I}$ be a family of primary fields with central charge c and conformal weights Δ_{ι} . Denote by $V_{c,\Delta_{\iota}}$ the \mathfrak{Vir} -module generated by Φ_{ι} . Assume $\Phi(z)$ is a primary field from the collection with conformal weight $\Delta = h_{-}$, where h_{-} is as in Exercise 3.

- (a) Use Exercise 2 to show that the lowest level at which the Verma module $M_{c,\Delta}$ has singular vectors is 2. Conclude that $V_{c,\Delta} \cong M_{c,\Delta}/(\mathfrak{Vir} w_{c,\Delta})$, where $w_{c,\Delta}$ is the 2-level singular vector from Exercise 3.
- (b) Assuming that the correlation function

$$F_{\iota_1,\ldots,\iota_n}(z_1,\ldots,z_n,z) = \langle \Phi_{\iota_1}(z_1)\ldots\Phi_{\iota_n}(z_n)\Phi(z) \rangle$$

satisfies Equations (3), find a differential operator D expressed in terms of $\mathcal{L}_{-k}^{(z)}$ such that the following differential equation is satisfied:

$$DF_{\iota_1,\ldots,\iota_n}(z_1,\ldots,z_n,z) = 0$$

Hint: note that $\langle \cdot \rangle$ *is a linear operator.*

(c) Assuming translation invariance, i.e.

$$F_{\iota_1,\ldots,\iota_n}(z_1+\lambda,\ldots,z_n+\lambda,z+\lambda)=F_{\iota_1,\ldots,\iota_n}(z_1,\ldots,z_n,z),$$

show that equation (4) becomes the following BPZ equation:

(5)
$$\left[-\frac{3}{2(2\Delta+1)}\frac{\partial^2}{\partial z^2} - \sum_{i=1}^n \left(\frac{1}{z_i - z}\frac{\partial}{\partial z_i} - \frac{\Delta_{\iota_i}}{(z_i - z)^2}\right)\right]F_{\iota_1,\dots,\iota_n}(z_1,\dots,z_n,z) = 0.$$

(d) Consider the parameterization $c = \frac{(3\kappa-8)(6-\kappa)}{2\kappa}$ from Exercise 3(c). Assuming $\Delta_{\iota_i} = h_- = \frac{6-\kappa}{2\kappa}$ for every *i*, write down the BPZ-equation (5) in terms of κ .