Quantum neural networks as Gaussian processes

Giacomo De Palma Filippo Girardi arXiv:2402.08726

Finanziato dall'Unione europea NextGenerationEU

Supervised learning

Goal: classify unlabeled data (e.g., handwritten digits) Input encoded in vector $x \in \mathbb{R}^{a}$

For simplicity we assume that the set of the possible inputs is finite, but all results generalize to any compact input set Classifier: parametric family of functions $\{F_{\Theta}(x) : \Theta \in \mathbb{R}^b\}$ Binary classification: F_{Θ} takes real values and label is sign $F_{\Theta}(x)$

Training data: labeled inputs (X_{α}, Y_{α})

Quality of F_{Θ} on training data quantified by cost function

We choose square loss
$$C(\Theta) = \frac{1}{2} \sum_{\alpha} \left(F_{\Theta}(X_{\alpha}) - Y_{\alpha} \right)^2$$

Parameters initialized by sampling from iid distribution and trained with (stochastic) gradient descent

Quantum neural networks

Quantum circuits made by **parametric** one- and two-qubit gates (we will assume only one-qubit gates are parametric)

Parameters encode components of Θ and x as evolution times of single-qubit Hamiltonians

 $F_{\Theta}(x)$ is expectation value of global observable *H* measured on output state; periodic in each component of *x* and Θ

Each component of Θ is randomly initialized from uniform distribution

 $H = \frac{1}{N} \sum_{i=1}^{n} Z_i \qquad \begin{array}{l} n = \text{#qubits} \\ N \text{ normalization factor} \end{array}$ We choose $V(x_1)$ $W_1(\theta_1)$ $W_8(\theta_8)$ $W_{15}(heta_{15})$ $|0\rangle$ $D O_1$ $W_2(heta_2)$ $V(x_2)$ $W_g(\theta_g)$ $W_{16}(\theta_{16})$ $|0\rangle$ $D O_{2}$ $W_3(\theta_3)$ $V(x_1)$ $W_{10}(heta_{10})$ $W_{17}(\theta_{17})$ $\bigcirc O_3$ $|0\rangle$ $W_{18}(heta_{18})$ $W_4(\theta_4)$ $V(x_2)$ $W_{11}(\theta_{11})$ $D O_{k}$ $|0\rangle$ $W_5(\theta_5)$ $V(x_1)$ $W_{12}(heta_{12})$ $W_{19}(\theta_{19})$ $D O_5$ $|0\rangle$ $W_{13}(heta_{13})$ $W_{20}(heta_{20})$ $W_6(\theta_6)$ $V(x_2)$ $D O_6$ $|0\rangle$ $|0\rangle$ $W_{\gamma}(\theta_{\gamma})$ $V(x_1)$ $W_{14}(\theta_{14})$ $W_{21}(heta_{21})$ $D O_{\gamma}$

Open problems

- Does the empirical risk converge to zero with the training? Possible issues:
 - Limited expressivity
 - Bad local minima

Anschuetz, Kiani, "Quantum variational algorithms are swamped with traps", <u>Nat</u> <u>Commun 13, 7760 (2022)</u>

 Barren plateaus: Gradients of the cost function decay exponentially with # of layers

Napp, "Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze", <u>arXiv:2203.06174</u> (+ many others)

- Does the trained network have good generalization performances, i.e., good performances on inputs that are not part of the training examples? Possible issues:
 - Overfitting (too many parameters)

 Are quantum neural networks better than classical neural networks? Cerezo, Larocca, García-Martín, Diaz, Braccia, Fontana, Rudolph, Bermejo, Ijaz, Thanasilp, Anschuetz, Holmes, "Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing", arXiv:2312.09121

The limit of infinite width

Hint from classical deep learning: limit of infinite width is smooth and analytically solvable

Training in the limit @ constant depth considered in [Abedi, Beigi, Taghavi, "Quantum Lazy Training", <u>Quantum</u> 7, 989 (2023)]

Key observation: $\langle Z_i \rangle$ depends only on past light-cone of measured qubit *i*

For constant depth, each $\langle Z_i \rangle$ can be classically computed simulating only O(1) qubits in O(1) time!

We allow polylogarithmic light-cones keeping the depth logarithmic to avoid barren plateaus

Assume light-cones are all equal and do not share parameters. Let θ_i be the vector of the parameters in the past light-cone of qubit *i*

$$F_{\Theta}(x) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} f_{\theta_i}(x) \qquad f_{\theta_i}(x) = \langle Z_i \rangle$$

By central limit theorem, $F_{\Theta}(x)$ tends to Gaussian process (for any $x_1, ..., x_k$, joint probability distribution of $(F_{\Theta}(x_1), ..., F_{\Theta}(x_k))$ is Gaussian)

Parameters randomly initialized with iid sampling and

 $\mathbb{E}_{\theta} f_{\theta}(x) = 0$

Covariance at initialization

$$\mathbb{E}_{\Theta}\left(F_{\Theta}(x) F_{\Theta}(x')\right) = \mathbb{E}_{\theta}\left(f_{\theta}(x) f_{\theta}(x')\right) = K_0(x, x')$$

Gradient flow: lazy training!

$$\dot{\theta}_i = -\nabla_{\theta_i} C(\Theta) = \frac{1}{\sqrt{n}} \sum_{\alpha} \left(Y_\alpha - F_\Theta(X_\alpha) \right) \nabla_{\theta_i} f_{\theta_i}(X_\alpha) = O\left(\frac{1}{\sqrt{n}}\right)$$

Finite variation of the generated function

$$\frac{d}{dt}F_{\Theta}(x) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\dot{\theta}_{i}\cdot\nabla_{\theta_{i}}f_{\theta_{i}}(x) = \sum_{\alpha}K_{\Theta}^{\mathrm{tan}}(x,X_{\alpha})\left(Y_{\alpha} - F_{\Theta}(X_{\alpha})\right) = O(1)$$

Empirical neural tangent kernel

$$K_{\Theta}^{\mathrm{tan}}(x, x') = \nabla_{\Theta} F_{\Theta}(x) \cdot \nabla_{\Theta} F_{\Theta}(x')$$
$$= \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta_i} f_{\theta_i}(x) \cdot \nabla_{\theta_i} f_{\theta_i}(x') = O(1)$$

For $n \rightarrow \infty$, the empirical NTK at initialization tends to its expectation

$$K_{\tan}(x, x') = \mathbb{E}_{\Theta} \left(\nabla_{\Theta} F_{\Theta}(x) \cdot \nabla_{\Theta} F_{\Theta}(x') \right)$$
$$= \mathbb{E}_{\theta} \left(\nabla_{\theta} f_{\theta}(x) \cdot \nabla_{\theta} f_{\theta}(x') \right)$$

The training is lazy and can change the empirical NTK only by $O(1/\sqrt{n})$

The model becomes linear and analytically solvable

$$\frac{d}{dt}F_t^{\rm lin}(x) = \sum_{\alpha} K_{\rm tan}(x, X_{\alpha}) \left(Y_{\alpha} - F_t^{\rm lin}(X_{\alpha})\right)$$

$$F_t^{\rm lin}(x) = F_0(x) - K_{\rm tan}(x, X)^T K_{\rm tan}^{-1} \left(I - e^{-tK_{\rm tan}}\right) \left(F_0 - Y\right)$$

$$(K_{\rm tan})_{\alpha\beta} = K_{\rm tan}(X_{\alpha}, X_{\beta}) \qquad K_{\rm tan}(x, X)_{\alpha} = K_{\rm tan}(x, X_{\alpha})$$

$$(F_0)_{\alpha} = F_0(X_{\alpha})$$

For $n \to \infty$, $F_t^{\text{lin}}(x)$ converges in distribution to the Gaussian process with mean and covariance

$$\mu_t(x) = \mathbb{E} F_t^{\text{lin}}(x) = K_{\text{tan}}(x, X)^T K_{\text{tan}}^{-1} \left(I - e^{-tK_{\text{tan}}} \right) Y$$

$$K_t(x, x') = \text{Cov} \left(F_t^{\text{lin}}(x), F_t^{\text{lin}}(x') \right)$$

$$= K_0(x, x') - K_{\text{tan}}(x, X)^T K_{\text{tan}}^{-1} \left(I - e^{-tK_{\text{tan}}} \right) K_0(X, x')$$

$$- K_0(x, X)^T \left(I - e^{-tK_{\text{tan}}} \right) K_{\text{tan}}^{-1} K_{\text{tan}}(X, x')$$

$$+ K_{\text{tan}}(x, X)^T K_{\text{tan}}^{-1} \left(I - e^{-tK_{\text{tan}}} \right) K_0 \left(I - e^{-tK_{\text{tan}}} \right) K_{\text{tan}}^{-1} K_{\text{tan}}(X, x')$$

$$\left(K_0 \right)_{\alpha\beta} = K_0(X_{\alpha}, X_{\beta}) \qquad K_0(x, X)_{\alpha} = K_0(x, X_{\alpha})$$

 $(\Lambda_0)_{\alpha\beta} \equiv \Lambda_0(\Lambda_\alpha, \Lambda_\beta)$

Limit $t \rightarrow \infty$: Gaussian process perfectly fits the examples. Mean and covariance

$$\mu_{\infty}(x) = K_{\tan}(x, X)^{T} K_{\tan}^{-1} Y$$

$$K_{\infty}(x, x') = K_{0}(x, x') - K_{\tan}(x, X)^{T} K_{\tan}^{-1} K_{0}(X, x')$$

$$- K_{0}(x, X)^{T} K_{\tan}^{-1} K_{\tan}(X, x')$$

$$+ K_{\tan}(x, X)^{T} K_{\tan}^{-1} K_{0} K_{\tan}^{-1} K_{\tan}(X, x')$$

Assumptions

We consider a sequence of QNNs with increasing *n* trained on a fixed training set with gradient descent

• $K_0(x,x')$ and $K_{tan}(x,x')$ depend on *n*. Normalization *N* chosen such that they have a finite and strictly positive limit

$$\lim_{n \to \infty} K_0^{(n)}(x, x') = K_0(x, x') \succ 0$$
$$\lim_{n \to \infty} K_{\tan}^{(n)}(x, x') = K_{\tan}(x, x') \succ 0$$

Implies no barren plateaus

- Assumptions on the architecture in terms of
 - L = # of layers (needs to be $O(\log n)$ to avoid barren plateaus)
 - Q = maximum # of measured qubits influenced by a single parameter
 - P = maximum # of parameters that influence a single measured qubit

Gaussian process at initialization

Assume that

$$\lim_{n \to \infty} \frac{n Q^2 P^2}{N^3} = 0$$

Then, the random function $F_{\Theta}(x)$ converges in distribution to the Gaussian process with zero mean and covariance $K_0(x,x')$

NTK concentration and lazy training

Assume that $\lim_{n \to \infty}$

$$\lim_{n \to \infty} \frac{n \, L \, Q^4 \, P^2}{N^4} = 0$$

Then, the empirical NTK converges in distribution to $K_{tan}(x,x')$

 0^{2} 0^{2}

Further assume

$$\lim_{n \to \infty} \frac{n Q^2 P^2}{N^3} = 0$$

Then, for any *n* large enough, with high probability we have

$$\sup_{t} \|\Theta_t - \Theta_0\|_{\infty} = O\left(\frac{Q}{\lambda_{\min}N}\right)$$

where λ_{\min} is the minimum eigenvalue of K_{\tan}

Trained QNNs as Gaussian processes

Assume that
$$\lim_{n \to \infty} \frac{L^2 n^2 Q^6 P^3 \log N}{N^5} = 0$$

Then, for sufficiently large *n*, with high probability we have

$$\sup_{x,t} \left| F_{\Theta(t)}(x) - F_t^{\lim}(x) \right| = O\left(\frac{L^2 n^2 Q^6 P^2 \log N}{N^5 \lambda_{\min}^3}\right) = o(1)$$

Moreover, for any *t*, $F_{\Theta(t)}(x)$ converges in distribution to the Gaussian process with mean $\mu_t(x)$ and covariance $K_t(x,x')$

Noisy gradient descent

We consider training with discrete gradient descent

$$\Theta_{t+1} = \Theta_t - \eta \, \nabla_\Theta C(\Theta_t)$$

Thanks to parameter-shift rule

$$\partial_{\Theta_i} F_{\Theta}(x) = \frac{1}{2} \left(F_{\Theta + \frac{\pi}{2}e_i}(x) - F_{\Theta - \frac{\pi}{2}e_i}(x) \right)$$

1 > 1

gradients can be computed with O(1) evaluations of $F_{\Theta}(x)$

 $F_{\Theta}(x)$ estimated by measurements. We assume unbiased estimators for each component of the gradient with

 $\alpha(\alpha)$

variance

$$O\left(\frac{\lambda_{\min}^4 C(\Theta_t)}{Q^2 L^3 n^3 t^2}\right)$$

Can be achieved with poly(n) measurements for any fixed t

Noisy gradient descent

Assume that
$$\lim_{n \to \infty} \frac{L^2 n^2 Q^6 P^4 \log N}{N^5} = 0$$

Then, for any *t*, $F_{\Theta(t)}(x)$ converges in distribution to the Gaussian process with mean and covariance

$$\mu_t(x) = K_{tan}(x, X)^T K_{tan}^{-1} \left(I - (I - \eta K_{tan})^t \right) Y$$

$$K_t(x, x') = K_0(x, x')$$

$$- K_{tan}(x, X)^T K_{tan}^{-1} \left(I - (I - \eta K_{tan})^t \right) K_0(X, x')$$

$$- K_0(x, X)^T \left(I - (I - \eta K_{tan})^t \right) K_{tan}^{-1} K_{tan}(X, x')$$

$$+ K_{tan}(x, X)^T K_{tan}^{-1} \left(I - (I - \eta K_{tan})^t \right) K_0 \left(I - (I - \eta K_{tan})^t \right) K_{tan}^{-1} K_{tan}(X, x')$$

Quantum advantage vs barren plateaus

Effective Hilbert spaces associated to past light-cones of measured qubits have dimension 2^{Q}

Naïve classical simulation not efficient whenever dimension grows superpolynomially, i.e., $\lim_{n\to\infty}\frac{Q}{\log n}=\infty$

Is this condition compatible with our hypotheses?

Naïve normalization: $N = \sqrt{n}$ Variance decays exponentially with $L \Rightarrow N = \sqrt{\frac{n}{2^{cL}}}$ Choose

$$L = \epsilon \log_2 n$$
 $N = n^{\frac{1-c\epsilon}{2}}$ $0 < \epsilon < \frac{1}{5c}$

Qubits on 2D square lattice with nearest-neighbor interactions:

$$Q \simeq L^2 = \epsilon^2 \left(\log_2 n\right)^2 = O(\operatorname{polylog} n) \qquad P \le L Q = O(\operatorname{polylog} n)$$

Our hypotheses are satisfied!

$$\frac{L^2 n^2 Q^6 P^4 \log N}{N^5} = O\left(n^{\frac{5c\epsilon - 1}{2}} \operatorname{polylog} n\right) \to 0$$

Conclusions

- Trained QNNs in the limit of infinite width are Gaussian processes
- Training always converges in poly time and perfectly fits the training examples
- Generated function is smooth despite infinitely many parameters
- Results robust to statistical noise
- QNNs with qubits on 2D square lattice with nearestneighbor interactions and logarithmic depth satisfy hypotheses and do not allow naïve efficient classical simulations
- Provable advantages??