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Supervised learning
Goal: classify unlabeled data (e.g., handwritten digits)

Input encoded in vector x ∈ ℝa

For simplicity we assume that the set of the possible inputs

is finite, but all results generalize to any compact input set

Classifier: parametric family of functions {FΘ(x) : Θ ∈ ℝb}

Binary classification: FΘ takes real values and label is sign

FΘ(x)

Training data: labeled inputs (Xα,Yα)

Quality of FΘ on training data quantified by cost function
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Parameters initialized by sampling from iid distribution and 

trained with (stochastic) gradient descent

We choose square loss



Quantum neural networks
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Quantum circuits made by parametric one- and two-qubit gates 

(we will assume only one-qubit gates are parametric)

Parameters encode components of Θ and x as evolution times of 

single-qubit Hamiltonians

FΘ(x) is expectation value of global observable H measured on 

output state; periodic in each component of x and Θ

Each component of Θ is randomly initialized from uniform 

distribution

We choose
n = #qubits

N normalization factor



Open problems
▪ Does the empirical risk converge to zero with the training? Possible 

issues:

▪ Limited expressivity

▪ Bad local minima
Anschuetz, Kiani, “Quantum variational algorithms are swamped with traps”, Nat 
Commun 13, 7760 (2022)

▪ Barren plateaus: Gradients of the cost function decay exponentially 
with # of layers
Napp, “Quantifying the barren plateau phenomenon for a model of unstructured 
variational ansätze”, arXiv:2203.06174 (+ many others)

▪ Does the trained network have good generalization performances, 
i.e., good performances on inputs that are not part of the training 
examples? Possible issues:

▪ Overfitting (too many parameters)

▪ Are quantum neural networks better than classical neural networks?
Cerezo, Larocca, García-Martín, Diaz, Braccia, Fontana, Rudolph, Bermejo, Ijaz, 
Thanasilp, Anschuetz, Holmes, “Does provable absence of barren plateaus imply 
classical simulability? Or, why we need to rethink variational quantum computing”, 
arXiv:2312.09121
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The limit of infinite width
Hint from classical deep learning: limit of infinite width is 

smooth and analytically solvable

Training in the limit @ constant depth considered in 

[Abedi,  Beigi, Taghavi, “Quantum Lazy Training”, Quantum 

7, 989 (2023)]

Key observation: ⟨Zi⟩ depends only on past light-cone of 

measured qubit i

For constant depth, each ⟨Zi⟩ can be classically computed 

simulating only O(1) qubits in O(1) time!

We allow polylogarithmic light-cones keeping the depth 

logarithmic to avoid barren plateaus
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A toy model for the infinite-width limit
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Assume light-cones are all equal and do not share 

parameters. Let θi be the vector of the parameters in the 

past light-cone of qubit i

By central limit theorem, FΘ(x) tends to Gaussian process

(for any x1, …, xk, joint probability distribution of (FΘ(x1), …, 

FΘ(xk)) is Gaussian)

Parameters randomly initialized with iid sampling and

Covariance at initialization



A toy model for the infinite-width limit
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Gradient flow: lazy training!

Finite variation of the generated function

Empirical neural tangent kernel



A toy model for the infinite-width limit
For n → ∞, the empirical NTK at initialization tends to its 

expectation
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The training is lazy and can change the empirical NTK only 

by O(1/√n)

The model becomes linear and analytically solvable



A toy model for the infinite-width limit

For n → ∞, Ft
lin(x) converges in distribution to the Gaussian 

process with mean and covariance
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A toy model for the infinite-width limit

Limit t → ∞: Gaussian process perfectly fits the examples. 

Mean and covariance
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Assumptions
We consider a sequence of QNNs with increasing n trained on a 

fixed training set with gradient descent

▪ K0(x,x’) and Ktan(x,x’) depend on n. Normalization N chosen 

such that they have a finite and strictly positive limit
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Implies no barren plateaus

▪ Assumptions on the architecture in terms of
▪ L = # of layers (needs to be O(log n) to avoid barren plateaus)

▪ Q = maximum # of measured qubits influenced by a single 
parameter

▪ P = maximum # of parameters that influence a single measured 
qubit



Gaussian process at initialization

Assume that
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Then, the random function FΘ(x) converges in distribution to 

the Gaussian process with zero mean and covariance

K0(x,x’)



NTK concentration and lazy training

Assume that
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Then, the empirical NTK converges in distribution to 

Ktan(x,x’)

Then, for any n large enough, with high probability we have

where λmin is the minimum eigenvalue of Ktan

Further assume



Trained QNNs as Gaussian processes

Assume that
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Then, for sufficiently large n, with high probability we have

Moreover, for any t, FΘ(t)(x) converges in distribution to the 

Gaussian process with mean μt(x) and covariance Kt(x,x’)



Noisy gradient descent

We consider training with discrete gradient descent
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Thanks to parameter-shift rule

gradients can be computed with O(1) evaluations of FΘ(x)

FΘ(x) estimated by measurements. We assume unbiased 

estimators for each component of the gradient with 

variance

Can be achieved with poly(n) measurements for any fixed t



Noisy gradient descent

Assume that
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Then, for any t, FΘ(t)(x) converges in distribution to the 

Gaussian process with mean and covariance



Quantum advantage vs barren plateaus
Effective Hilbert spaces associated to past light-cones of measured 

qubits have dimension 2Q

Naïve classical simulation not efficient whenever dimension grows 

superpolynomially, i.e.,
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Is this condition compatible with our hypotheses?

Naïve normalization: N = √n

Variance decays exponentially with L ⇒

Choose

Qubits on 2D square lattice with nearest-neighbor interactions:

Our hypotheses are satisfied!



Conclusions

▪ Trained QNNs in the limit of infinite width are Gaussian 

processes

▪ Training always converges in poly time and perfectly fits 

the training examples

▪ Generated function is smooth despite infinitely many 

parameters

▪ Results robust to statistical noise

▪ QNNs with qubits on 2D square lattice with nearest-

neighbor interactions and logarithmic depth satisfy 

hypotheses and do not allow naïve efficient classical 

simulations

▪ Provable advantages??
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