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Supervised learning

Goal: classify unlabeled data (e.g., handwritten digits)
Input encoded in vector x € R@

For simplicity we assume that the set of the possible inputs
IS finite, but all results generalize to any compact input set

Classifier: parametric family of functions {F,(x) : @ € R}
Binary classification: F, takes real values and label is sign
Fo(X)

Training data: labeled inputs (X ,Y,)

Quality of F, on training data quantified by cost function

1 2
We choose square loss (9 = . ; (Fo(X,)—Y,)
Parameters Initialized by sampling from iid distribution and

trained with (stochastic) gradient descent



Quantum neural networks

Quantum circuits made by parametric one- and two-qubit gates
(we will assume only one-qubit gates are parametric)

Parameters encode components of ® and x as evolution times of
single-qubit Hamiltonians

Fo(X) Is expectation value of global observable H measured on
output state; periodic in each component of x and @

Each component of @ is randomly initialized from uniform
distribution

We choose H = —
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Open problems

= Does the empirical risk converge to zero with the training? Possible
ISSues:

= Limited expressivity

= Bad local minima

Anschuetz, Kiani, “Quantum variational algorithms are swamped with traps”, Nat
Commun 13, 7760 (2022)

= Barren plateaus: Gradients of the cost function decay exponentially
with # of layers

Napp, “Quantifying the barren plateau phenomenon for a model of unstructured
variational ansatze”, arXiv:2203.06174 (+ many others)

= Does the trained network have good generalization performances,
l.e., good performances on inputs that are not part of the training
examples? Possible issues:

= Qverfitting (too many parameters)

= Are quantum neural networks better than classical neural networks?

Cerezo, Larocca, Garcia-Martin, Diaz, Braccia, Fontana, Rudolph, Bermejo, ljaz,

Thanasilp, Anschuetz, Holmes, “Does provable absence of barren plateaus imply
classical simulability? Or, why we need to rethink variational quantum computing”,
arxiv:2312.09121



https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1038/s41467-022-35364-5
https://arxiv.org/abs/2203.06174
https://arxiv.org/abs/2312.09121

The limit of infinite width

Hint from classical deep learning: limit of infinite width is
smooth and analytically solvable

Training in the limit @ constant depth considered in
[Abedi, Beigi, Taghavi, “Quantum Lazy Training”, Quantum
7,989 (2023)]

Key observation: (Z;) depends only on past light-cone of
measured qubit |

For constant depth, each (Z,) can be classically computed
simulating only O(1) qubits in O(1) time!

We allow polylogarithmic light-cones keeping the depth
logarithmic to avoid barren plateaus



https://doi.org/10.22331/q-2023-04-27-989
https://doi.org/10.22331/q-2023-04-27-989

A toy model for the infinite-width limit

Assume light-cones are all equal and do not share
parameters. Let 6, be the vector of the parameters in the
past light-cone of qubit I

%mzﬁzmm fou(x) = (Z)

By central limit theorem, F,(x) tends to Gaussian process
(for any x,, ..., X, joint probability distribution of (Fy(x,), ...,
Fo(X,)) Is Gaussian)

Parameters randomly initialized with iid sampling and
E@f@(fb) =(

Covariance at initialization

Ee (Fo(z) Fo(z')) = Eg (fo(x) fo(z")) = Ko(z,2")



A toy model for the infinite-width limit

Gradient flow: lazy training!

b; = —V,,C( IZY — Fo(Xa)) Vo, fo, (Xa) = 0<%>

Finite variation of the generated function

* Fola) WZH Vo) = 3 KE" 0 Xa) (Yo~ Fal(Xa) =

Empirical neural tangent kernel
Kg&"(x,2") = VeoFe(z) - VoFe(z')

- % Zv%f@i (ZC) ' veifei (ZE,) — 0(1)
1=1



A toy model for the infinite-width limit

For n — oo, the empirical NTK at initialization tends to its
expectation

Ktan(xa ml) — ]E@ (V@F@(ZE) ' v@F@(xl))
=Eg (Vo fo(z) - Vofo(z'))

The training is lazy and can change the empirical NTK only
by O(1/4n)
The model becomes linear and analytically solvable

d 11n lin
%F ZKm 1, X,) (Yo — F™(X,))
F™ (@) = Fo(x) = Kian(2, X)" Ky, (I —¢7"0) (B = Y)

<Ktan>ocﬁ — Ktan<XomXB) Ktan<an)oz — Ktan@aXa)
<FO)04 — F()(Xa)



A toy model for the infinite-width limit

For n — oo, F/I"(x) converges in distribution to the Gaussian
process with mean and covariance

pe(2) = EF™ (2) = Kian(2, X)" Ki
Ki(z,z") = Cov (Flin( ), F'™ (x )
= Ko(7,2") — Ktan (2, X)" Koy (I — 7)) Ko(X, 2)
— Ko(z, X)" (I — e ") Kool Kpan (X, )
+ Koan (2, X)" Kepy, (I — e Ko (I — e ") K,

(I —e Hen)y
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tan tan
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A toy model for the infinite-width limit

Limit t — oo: Gaussian process perfectly fits the examples.
Mean and covariance

uoo(:v):Ktan(:U,X) Kly

tan
Koo(z,2') = Ko(z,2') — Kean(z, X)T K}
_ K()(Q?,X) Ktan KtaIl(X Qj)

+ Koan (2, X)T K2 Ko Kb Kan (X, ')

tan tan

K()(X XL )



Assumptions

We consider a sequence of QNNs with increasing n trained on a
fixed training set with gradient descent

= Ky(x,x”) and K,(x,x”) depend on n. Normalization N chosen
such that they have a finite and strictly positive limit

lim Kén)(:n,a:’) = Ko(x,2') = 0

n—oo

lim Kt(gg(:c,x/) = Kian(z,2') = 0
n—oo
Implies no barren plateaus

= Assumptions on the architecture in terms of

= L = # of layers (needs to be O(log n) to avoid barren plateaus)

= Q = maximum # of measured qubits influenced by a single
parameter

= P = maximum # of parameters that influence a single measured
qubit



Gaussian process at initialization

Assume that

nQ2P2 0

Jm
Then, the random function F(x) converges in distribution to
the Gaussian process with zero mean and covariance

Ko(X,X")



NTK concentration and lazy training

n L Q* P? _ 0

Assume that ~ lim i

Then, the empirical NTK converges in distribution to
Kian(X,X")

. nQ2P2
Further assume  lim —o— =0

Then, for any n large enough, with high probability we have

o)
O; — Opllec =0
Slllﬁ-pH ! OH <>\minN

where 4., IS the minimum eigenvalue of K,



Trained QNNs as Gaussian processes

, L?2n20% P3log N
Assume that lim @ 5 _ o

Then, for sufficiently large n, with high probability we have

. L2n?2Q% P?2log N
SU%) ‘F@(t) Fl | — ( 5 ) — 0(1)

NOXS .

min

Moreover, for any t, Fg,(X) converges in distribution to the
Gaussian process with mean y,(x) and covariance K(x,X*)



Noisy gradient descent

We consider training with discrete gradient descent
@t—|—1 — @t — HV(@C(@t)

Thanks to parameter-shift rule

90,Fo(z) = 5 (Fou ge.(x) ~ Fo_ge,(x)

gradients can be computed with O(1) evaluations of F(x)

Fo(X) estimated by measurements. We assume unbiased
estimators for each component of the gradient with

variance ele
O min ( t)
QZ L3 n3 t2
Can be achieved with poly(n) measurements for any fixed t




Noisy gradient descent

L2n2Q% P*log N
Assume that lim n”Q &

n— 00 N?° =0

Then, for any t, Fg(X) converges in distribution to the
Gaussian process with mean and covariance

p(2) = K (2, X)T K (1= (I =0 Kyan)') Y
Ki(z,2") = Ko(z,2)
 Kian(z, X)T K21 (1 (I -y Ktan)t> Ko(X, ')

Ktan<X L )

tan

- Kolae, X)" (1= (I = nKuw)') Ko

-+ Ktan(x X) Ktan (I o (I o 77[{1:3&1) > KO <I o (I o 77[{tan) > Ktan Ktan(X L )



Quantum advantage vs barren plateaus

Effective Hilbert spaces associated to past light-cones of measured
qubits have dimension 2°

Naive classical simulation not efficient whenever dimension grows

superpolynomially, i.e., 13
n—oo logn

Is this condition compatible with our hypotheses?
Naive normalization: N = vn
Variance decays exponentially with L = N = 5eL
Choose

1—ce 1

L=c¢€logobn N=n72  0<e<—
e

Qubits on 2D square lattice with nearest-neighbor interactions:
Q ~ L? = ¢* (log, n)2 = O(polylogn) P < LQ = O(polylogn)
Our hypotheses are satisfied!
L?n? Q% P*log N
INE

= 0

5ce—1

=0 (n 2 polylog n) — 0




Conclusions

= Trained QNNSs in the limit of infinite width are Gaussian
processes

= Training always converges in poly time and perfectly fits
the training examples

= Generated function is smooth despite infinitely many
parameters

= Results robust to statistical noise

= QNNs with qubits on 2D square lattice with nearest-
neighbor interactions and logarithmic depth satisfy
hypotheses and do not allow naive efficient classical
simulations

= Provable advantages??
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