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Cambridge Dictionary 

Embezzlement Noun. /ɪmˈbez.əl.mənt/


The crime of secretly taking money that is in your care or that 
belongs to an organization or business you work for.
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Embezzlement of chocolate?

user585825, How many whole pieces can be taken out in this way? (Infinite chocolate bar 
problem), URL (version: 2018-08-20): https://math.stackexchange.com/q/28891883
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Embezzlement of chocolate?

user585825, How many whole pieces can be taken out in this way? (Infinite chocolate bar 
problem), URL (version: 2018-08-20): https://math.stackexchange.com/q/28891883



Embezzlement of chocolate?

user585825, How many whole pieces can be taken out in this way? (Infinite chocolate bar 
problem), URL (version: 2018-08-20): https://math.stackexchange.com/q/28891883

Problem: Easy to detect.


Successful embezzlement requires

that it is hard to detect.


Should be difficult to measure the 
amount of the resource that one 
wants to embezzle.



Embezzlement of entanglement 

The crime of secretly taking entanglement that is in your care or 
that belongs to an organization or business you work for.
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|Ω⟩AB ∈ ℋA ⊗ ℋB

|0⟩A |0⟩B

BobAlice
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To make sure that no record of the crime exists, this should 
be done without classical communication!
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|Ω⟩AB ∈ ℋA ⊗ ℋB

7

|0⟩A |0⟩B

BobAlice

 Ideally:                                                                                                  UAUB( |Ω⟩AB ⊗ |0⟩A |0⟩B) = |Ω⟩AB ⊗ |Ψ⟩AB Impossible!

Richard Cleve, Li Liu, and Vern I. Paulsen, “Perfect Embezzlement of Entanglement”, 
Journal of Mathematical Physics 58, no. 1 (2017)



The van Dam — Hayden family

The family of states


fulfills 

Schmidt rank d

W. van Dam and P. Hayden, “Universal Entanglement Transformations without 
Communication”, Physical Review A 67, no. 6 (2003): 060302

|Ωn⟩AB :=
1
Hn

n

∑
j=1

1
j

| j⟩A | j⟩B

inf
UA,UB

∥UAUB( |Ωn⟩AB ⊗ |0⟩A |0⟩B) − |Ωn⟩AB ⊗ |Ψ⟩AB∥ ≤ 2
log(d)
log(n)
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The van Dam — Hayden family

The family of states


fulfills 

Schmidt rank d

W. van Dam and P. Hayden, “Universal Entanglement Transformations without 
Communication”, Physical Review A 67, no. 6 (2003): 060302

• The error is essentially optimal 
(Fannes-Audenaert)

|Ωn⟩AB :=
1
Hn

n

∑
j=1

1
j

| j⟩A | j⟩B

inf
UA,UB

∥UAUB( |Ωn⟩AB ⊗ |0⟩A |0⟩B) − |Ωn⟩AB ⊗ |Ψ⟩AB∥ ≤ 2
log(d)
log(n)

D. Leung and B. Wang, “Characteristics of 
Universal Embezzling Families”, Physical 
Review A 90, no. 4 (2014): 042331


Elia Zanoni, Thomas Theurer, and Gilad Gour, 
“Complete Characterization of Entanglement 
Embezzlement”, (2023), arXiv.2303.17749.

λj ∼ 1
j

• Every embezzling family has a 
Schmidt spectrum scaling 
essentially as
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The van Dam — Hayden family

The family of states


fulfills 

Schmidt rank d

W. van Dam and P. Hayden, “Universal Entanglement Transformations without 
Communication”, Physical Review A 67, no. 6 (2003): 060302

• The error is essentially optimal 
(Fannes-Audenaert)

|Ωn⟩AB :=
1
Hn

n

∑
j=1

1
j

| j⟩A | j⟩B

inf
UA,UB

∥UAUB( |Ωn⟩AB ⊗ |0⟩A |0⟩B) − |Ωn⟩AB ⊗ |Ψ⟩AB∥ ≤ 2
log(d)
log(n) • The normalization factor        

diverges with n. 
Hn

Cannot simply take the limit!

D. Leung and B. Wang, “Characteristics of 
Universal Embezzling Families”, Physical 
Review A 90, no. 4 (2014): 042331


Elia Zanoni, Thomas Theurer, and Gilad Gour, 
“Complete Characterization of Entanglement 
Embezzlement”, (2023), arXiv.2303.17749.
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j

• Every embezzling family has a 
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1. Is there a quantum state that can embezzle states 
of arbitrary Schmidt rank to arbitrary precision?                                          
Embezzling state.
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1. Is there a quantum state that can embezzle states 
of arbitrary Schmidt rank to arbitrary precision?                                          
Embezzling state.

2. Are there systems where all states are embezzling 
states?                                                          
Universal embezzler.

3. Do universal embezzlers exist in nature? 
*

*Might depend on 
quantum gravity
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Tensor product 
framework

⊗
Commuting operator 

framework

ℳ
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See also: L. van Luijk, R. Schwonnek, AS, R. F. Werner, “The Schmidt rank for the commuting operator framework”, arXiv:2307.11619



Setting: Commuting operator framework

Commuting Operator Tensor Product

Hilbert space

Quantum States

Operators of 
Alice

Operators of 
Bob

Haag Duality 

No classical 
d.o.f.

• All Hilbert spaces 
separable


• All algebras von 
Neumann algebras:

ℋAB

ℳA ⊆ ℬ(ℋAB)

ℳB ⊆ ℬ(ℋAB)

ℳA = ℳ′ B

|Ω⟩ ∈ ℋAB

ℳA ∩ ℳ′ A = ℂ1

ℋA ⊗ ℋB

ℬ(ℋA) ⊗ 1

1 ⊗ ℬ(ℋB)

|Ω⟩ ∈ ℋA ⊗ ℋB

automatic

automatic

ℳ′ := {a ∈ ℬ(ℋ) | [a, ℳ] = 0} Commutant

ℳ = ℳ′ ′ 

(closed in weak 
operator topology)
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• Factor: 

     ℳ ∩ ℳ′ = ℂ1



Bipartite system:  A triple . 
(ℋ, ℳ, ℳ′ )

Embezzling state:  such that for all 

and all  exist local unitaries such that

|Ω⟩AB ∈ ℋ |Ψ⟩AB ∈ ℂn ⊗ ℂn

ε > 0
∥UAUB( |Ω⟩AB ⊗ |0⟩A |0⟩B) − |Ω⟩AB ⊗ |Ψ⟩AB∥ < ε

UA ∈ ℳ ⊗ Mn ⊗ 1, UB ∈ ℳ′ ⊗ 1 ⊗ Mn

Matrix algebras: Mn = Mn×n(ℂ) ≅ ℬ(ℂn)

12

Bipartite systems and embezzling states



Exact embezzlement
Is exact embezzlement (with ) possible in commuting operator 
framework?

ε = 0

Theorem.  
Exact embezzling states exist, but only if  is non-separable.ℋ
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From bipartite to monopartite: Tensor product framework

Pure state 
entanglement theory

Majorization theory on 
reduced state

Nielsen’s theorem

M. A. Nielsen, “Conditions for a Class of Entanglement Transformations”, 
Physical Review Letters 83, (1999)

|Ψ⟩AB ∈ ℋA ⊗ ℋB ψA ∈ 𝒮(ℋA)
Purification
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Monopartite embezzling state: State  on  such that for all  

and all states  on Mn there exists a unitary such that

ω ℳ ε > 0
ψ

∥U(ω ⊗ ⟨0 | ⋅ |0⟩)U* − ω ⊗ ψ∥ < ε

U ∈ ℳ ⊗ Mn

Standard bipartite system: Every marginal  on  has purification:


Same is true for  .

ω ℳ

ℳ′ 

ω(a) = ⟨Ωω |a |Ωω⟩ ∀a ∈ ℳ

15

From bipartite to monopartite



Result: On a standard bipartite system, entanglement embezzlement is 
equivalent to monopartite embezzlement: 

∥UAUB( |Ω⟩AB ⊗ |0⟩A |0⟩B) − |Ω⟩AB ⊗ |Ψ⟩AB∥ < ε

∥UA(ω ⊗ ⟨0 | ⋅ |0⟩)U*A − ω ⊗ ψA∥ < ε′ 

16

From bipartite to monopartite II
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Quantifying embezzlement



Quantifying embezzlement

Quality of a state to act as an embezzler in worst case:

κ(ω) = sup
n∈ℕ

sup
ρ,σ

inf
U

∥U(ω ⊗ ρ)U* − ω ⊗ σ∥

Minimize error over unitaries

Maximize error over all n-dim. density matrices

Maximize over all finite dimensions
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Quantifying embezzlement

κ(ω) = sup
n∈ℕ

sup
ρ,σ

inf
U

∥U(ω ⊗ ρ)U* − ω ⊗ σ∥

Best worst-case error: Worst worst-case error:

κmin = inf
ω

κ(ω) κmax = sup
ω

κ(ω)≤ κ(ω) ≤

  and  are algebraic invariants of κmin κmax ℳ

19

Quality of a state to act as an embezzler in worst case:
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Types of Factors Usually

ℳ

I

II

III

Type

II1
II∞

IIIλ λ ∈ [0,1]
ℳ ∩ ℳ′ = ℂ1

Factor

Subtype

In
ℳ ≃ ℬ(ℋ)

n = dim(ℋ)
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Types of Factors Usually

ℳ

I

II

III

Type

II1
II∞

IIIλ λ ∈ [0,1]

Semifinite:


Have a Trace

Purely infinite


Don’t have a Trace

ℳ ∩ ℳ′ = ℂ1
Factor

Subtype

In
ℳ ≃ ℬ(ℋ)

n = dim(ℋ)
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Main results

Type I II III

Subtype * *

2 2 0 0

2 2 2 02
1 − λ

1 + λ

κmin

κmax

λ = 0 0 < λ < 1 λ = 1

∈ [0,2]
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Main results

Type I II III

Subtype * *

2 2 0 0

2 2 2 02
1 − λ

1 + λ

κmin

κmax

λ = 0 0 < λ < 1 λ = 1

Within type III, the embezzlement quantifiers tell us the subtype!


Embezzlement reveals Connes’ classification.

22

∈ [0,2]



From bipartite to monopartite: Commuting operator framework

Embezzling state Monopartite 
embezzling state

|Ω⟩ ∈ ℋ ω
Purification

ℳon

How to replace majorization theory?

23



Fundamental ingredient

von Neumann Algebra, 
state

(ℳ, ω) ((X, σs), Pω)
classical dynamical system, 

probability measure

Flow 
of 
 Weights

Alain Connes and Masamichi Takesaki, “The Flow of Weights on Factors 
of Type III”, Tohoku Mathematical Journal 29, no. 4 (1977): 473–575


Uffe Haagerup and Erling Størmer, “Equivalence of Normal States on von 
Neumann Algebras and the Flow of Weights”, Advances in Mathematics 
83, no. 2 (1990): 180–262
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Fundamental ingredient

von Neumann Algebra, 
state

(ℳ, ω) ((X, σs), Pω)
classical dynamical system, 

probability measure

Embezzlement Invariance under σs

Flow 
of 
 Weights
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Spectral states

 on ω ℳ  state (= prob. distr.) on Pω X

U. Haagerup and E. Størmer. “Equivalence of normal states on von Neumann 
algebras and the flow of weights”, Advances in Mathematics 83.2 (1990)

inf
U∈𝒰(ℳ)

∥UωU* − φ∥ = ∥Pω − Pφ∥

Theorem. Distance of unitary orbits = distance of spectral 
states:

•  contains full 
spectral information


• The set  can 
be characterized 
precisely

Pω

{Pω : ω}

26
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ℳ = MnSpectral states for

Density matrix Probability density

dPρ(t) = Dρ(t) dtρ = ∑
i

pi Pi

Multiplicities mi = Tr(Pi)

rank(ρ)

p1 p2 p3 p4

m1

m2

m3

0
0

t

Dρ(t)
Dρ(t) = Tr χ(t,∞)(ρ)
distribution function



Flow of weights:   ,  X = (0,∞) ̂σs(t) = es ⋅ t

0
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Flow of weights:   ,  X = (0,∞) ̂σs(t) = es ⋅ t

0

28

Spectral states for ℳ = Mn

0000

No invariant prob. distributions!



Dω⊗⟨0|⋅|0⟩(t) = Dω(t) Dω⊗ 1
n Tr(t) = nDω(tn)

29
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n Tr(t) = nDω(tn)

Theorem. If  is embezzling, then .ω Dω(t) ∝
1
t
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Dω⊗⟨0|⋅|0⟩(t) = Dω(t) Dω⊗ 1
n Tr(t) = nDω(tn)

Theorem. If  is embezzling, then .ω Dω(t) ∝
1
t

Proof sketch: If  is embezzling, we need for any n:


This implies

ω
Dω(t) = Dω⊗⟨0|⋅|0⟩(t) = Dω⊗ 1

n Tr(t) = nDω(nt)

Dω( m
n

t) =
n
m

Dω(t) Dω(t) =
1
t

Dω(1)
Right cont.

29

Spectral states and tensor products



Corollary. If  is semifinite, there are no 
embezzling states.

ℳ

30
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n Tr(t) = nDω(tn)

Theorem. If  is embezzling, then .ω Dω(t) ∝
1
t

Spectral states and tensor products



Corollary. If  is semifinite, there are no 
embezzling states.

ℳ

Proof sketch: Flow of weights is the same as for . 

 is integrable, but  is not.

Mn
Dω(t) 1/t

30
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Theorem. If  is embezzling, then .ω Dω(t) ∝
1
t

Spectral states and tensor products



Theorem. If  is embezzling, then .ω λω(t) ∝
1
t

Corollary. If  is semifinite, there are no 
embezzling states.

ℳ

Proof sketch: Flow of weights is the same as for . 

 is integrable, but  is not.

Mn
Dω(t) 1/t

Tensor product Ergodic flow

31

Dω⊗⟨0|⋅|0⟩(t) = Dω(t) = elog nDω(elog nt)

Spectral states and tensor products

Dω⊗ 1
n Tr(t) = nDω(tn)



von Neumann Algebra, 
state

(ℳ, ω) ((X, ̂σs), Pω)
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Flow 
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von Neumann Algebra, 
state

(ℳ, ω) ((X, ̂σs), Pω)
classical dynamical system, 

probability measure

Embezzlement Invariance under ̂σs

Flow 
of 
 Weights

κ(ω) = sup
s∈ℝ

∥σs(Pω) − Pω∥Theorem.

32

The fundamental theorem



The flow of weights of III  factorsλ

−
log(λ)

2π

σs

0 < λ < 1
33



The flow of weights of III  factorsλ

−
log(λ)

2π

σs

0 < λ < 1
Single point
λ = 1

Every measure invariant. 
Every state embezzling!
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Type I II III

Subtype * *

2 2 0 0

2 2 2 02
1 − λ

1 + λ

κmin

κmax

λ = 0 0 < λ < 1 λ = 1

34

Main results

∈ [0,2]
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⟺Universal embezzlement         type III  factors 1

Alain Connes and Erling Størmer, “Homogeneity of the State Space of Factors of Type III1”, 
Journal of Functional Analysis 28, no. 2 (1978)

1.  A factor is type III1 if and only if


2.  Type III factors are properly infinite:


inf
u∈ℳ

∥uω1u* − ω2∥ = 0 (Connes—Størmer)

ℳ ≃ ℳ ⊗ ℬ(ℋ)
⟹

Sp Δω = ℝ+

⟹ 3.  Embezzling states have maximal modular spectrum:



Statistical Mechanics: Infinite spin chains

Relativistic Quantum Field Theory

37

Type III  factors and where to find them1



38

ℳ ≅
∞

⨂
j=1

(M2, ρj)

Why universal embezzlers are Type III 1



ρ1 ρ2 ρ3 ρ4 …

ρ<n ρ≥n
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ρ1 ρ2 ρ3 ρ4 …

ρ<n ρ≥n

… …

≈ω ω<n ⊗ ρ≥n
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ℳ ≅
∞

⨂
j=1

(M2, ρj)

Why universal embezzlers are Type III 1



ρ1 ρ2 ρ3 ρ4 …

ρ<n ρ≥n

Infinite spin chain isomorphic to original spin chain

Universal embezzler:        must be embezzling.ρ≥n

39

Why universal embezzlers are Type III 1



…

ω

…

σ
40
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ω

…

σ

…

≈ ω<n ⊗ ρ≥n

…

≈ σ<n ⊗ ρ≥n
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…

ω

…

σ

…

≈ ω<n ⊗ ρ≥n

…

≈ σ<n ⊗ ρ≥n

embezzle using
ρ≥n
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Why universal embezzlers are Type III 1



…

ω

…

σ

…

≈ ω<n ⊗ ρ≥n

…

≈ σ<n ⊗ ρ≥n

all states 
approximately 

unitary equivalent

embezzle using
ρ≥n

40

Why universal embezzlers are Type III 1



… ω

ω<n

Theorem. Any hyperfinite embezzler induces an embezzling family.

Spin chains are examples of hyperfinite von Neumann algebras.

41

work in progress

From embezzlers to embezzling families

|Ωn⟩
purification



Minkowski 
spacetime M

𝒪A
𝒪B

42

Relativistic QFT

(Penrose diagram)



Minkowski 
spacetime M

𝒪A
𝒪B

General result in algebraic QFT:

ℳ(𝒪A) = ℳ(𝒪B)′ type III1
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Minkowski 
spacetime M

𝒪A
𝒪B

Relativistic quantum fields are 
universal embezzlers.

• Operational interpretation 
of diverging vacuum 
entanglement.


• Explains why they can 
violate Bell inequalities:  
Alice and Bob can 
embezzle Bell states!

Stephen J. Summers and Reinhard Werner, “The Vacuum Violates 
Bell’s Inequalities”, Physics Letters A 110, no. 5 (1985): 257–59
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Bell inequalities 

CHSH coefficient in a bipartite system:

β( |Ω⟩, ℳ, ℳ′ ) = sup ⟨Ω | (a+b+ + a+b− + a−b+ − a−b−) |Ω⟩
a± ∈ ℳ, b± ∈ ℳ′ 

−1 ≤ a±, b± ≤ 1

Theorem. In a standard bipartite system, every state fulfills

β( |Ω⟩, ℳ, ℳ′ ) ≥ 2 2 − 8 κ(ω)
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a± ∈ ℳ, b± ∈ ℳ′ 

−1 ≤ a±, b± ≤ 1

Theorem. In a standard bipartite system, every state fulfills

β( |Ω⟩, ℳ, ℳ′ ) ≥ 2 2 − 8 κ(ω)

 embezzling      ω ⟹ β( |Ω⟩) = 2 2
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The critical XY model is embezzling
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The critical XY model is embezzling

45

… …

𝒜Λ = ⨂
n∈Λ

M2(ℂ), Λ ⊂ ℤAlice: 
𝒜L = 𝒜(−∞,0]

Bob: 
𝒜R = 𝒜[1,∞)

If  = GNS rep. of the groundstate , then 


is a standard bipartite system of type III . Hence,  is embezzling.

(ℋ, π, |Ω⟩) ω : 𝒜ℤ → ℂ

1 |Ω⟩
(ℋ, ℳA := π(𝒜L)w, ℳB := π(𝒜R)w)

H = − 1
2 ∑ (XnXn+1 + YnYn+1)



,    unitaries , 


such that


∀ |Ψ⟩ ∈ ℂn ⊗ ℂn ε > 0 ∃N > 0, UL ∈ 𝒜[−N,0] ⊗ Mn, UR ∈ 𝒜[1,N] ⊗ Mn

ULUR(ω ⊗ ⟨00 | ⋅ |00⟩)U*L U*R − ω ⊗ ⟨Ψ | ⋅ |Ψ⟩ < ε

The critical XY model is embezzling
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1. Is there a quantum state that can embezzle states of arbitrary 
Schmidt rank to arbitrary precision?                                          
Embezzling state.


2. Are there systems where all states are embezzling states?                                                          
Universal embezzler.


3. Do universal embezzlers exist in nature? QFT.

Flow of λ

−
log(λ)

2π

ϕt

47

47

Type I II III

Subtype * *

2 2 0 0

2 2 2 02
1 − λ

1 + λ

κmin

κmax

λ = 0 1 > λ > 0 λ = 1

∈ [0,2]

𝒪A
𝒪B

…
ω

…
σ

…
≈ ω<n ⊗ ρ≥n

…
≈ σ<n ⊗ ρ≥n

 approx. 
unitary 

equivalent
embezzle 
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• Can Alice and Bob localize their operations in the QFT 
setting?


• Can one explicitly determine the embezzling unitaries in 
QFT?


• Can one get embezzlers as suitable limits of embezzling 
families? 


van Dam - Hayden family converges to a non-embezzling 
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• Can we drop Haag duality ( )?


• Can we find physically-motivated, embezzling many-body 
systems?

κ

ℳA ⊊ ℳ′ B
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Thank you for your attention!


