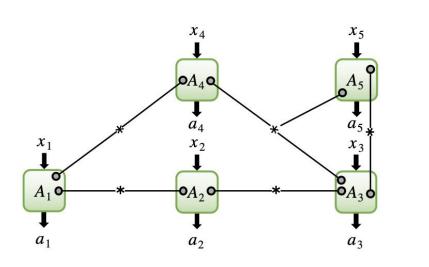
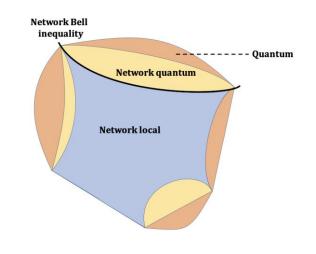
Network correlations

and

polynomial optimization over states







David Gross, University of Cologne

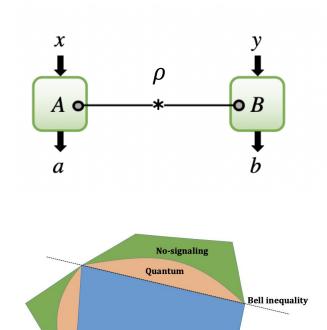
Joint work with Laurens Ligthart and Mariami Gachechiladze

arXiv:2110.14659 (CMP), arXiv:2212.11299 (JMP)

Recap: Bi-partite quantum correlations

Tensor product vs commuting models, MIP*=RE, SDP hierarchies, GNS construction...

Bipartite correlations, tensor product model



Local

Scenario:

- Two parties A, B,
- with finite local settings *x*, *y* and finite outcomes *a*, *b*.

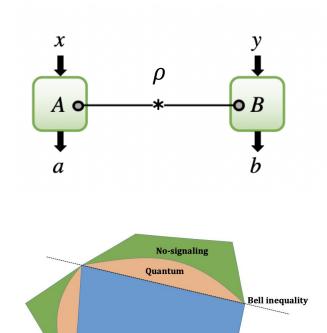
A distribution p(a, b | x, y) has *tensor-product model* if \exists

- Hilbert spaces H_A , H_B ,
- A joint state ρ on $H_A \otimes H_B$
- POVMs $\{A_{\alpha|x}\}, \{B_{\beta|y}\}$, such that

$$p(\alpha,\beta|x,y) = \rho(A_{\alpha|x} \otimes B_{\beta|y}).$$

*Most figures stolen from Tavakoli et al., Bell nonlocality in networks.

Bipartite correlations, commuting model



Local

Scenario:

- Two parties A, B,
- with finite local settings *x*, *y* and finite outcomes *a*, *b*.

A distribution p(a, b | x, y) has commuting operator model if \exists

- A Hilbert space *H*,
- Mutually commuting POVMs $\{A_{\alpha|x}\}, \{B_{\beta|y}\}$

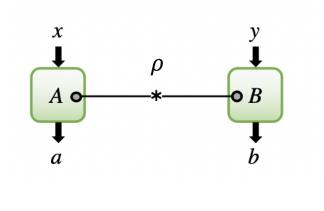
$$[A_{\alpha|x},B_{\beta|y}]=0$$

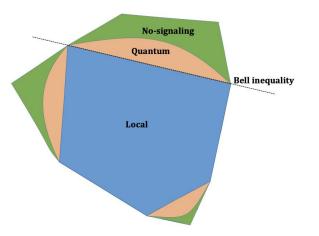
such that

$$p(\alpha,\beta|x,y) = \rho(A_{\alpha|x}B_{\beta|y}).$$

*Most figures stolen from Tavakoli et al., Bell nonlocality in networks.

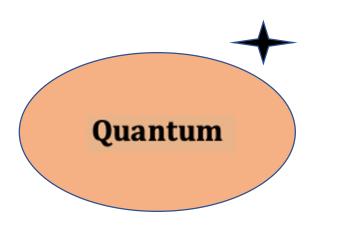
Tensor product vs commuting op models 1/2





- TP model common in quantum information
- CO model common relativistic QFT
- Agree in finite dimensions, so QI convention fine
- Since 2000: CO known to be more general
- Both are reasonable mathematical models.

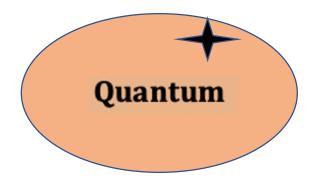
Weak membership problem



Given p(a, b | x, y), error bound ϵ .

- promised not to be on boundary
- Can one algorithmically decide whether it has a quantum model, "up to ε"?
- Emphasis on decidability, not computational complexity.
- Strategy: Find tight inner / outer approximations.

Inner approximations



- Correlations with finite-dim model are dense
- For every finite dimension, there is a *dense* enumerable dense set of models
- \Rightarrow Their union over all dims is still dense and enumerable
- \Rightarrow Every member can be identified in finitely many steps

Outer approximations 1/4

+	
Quantum	

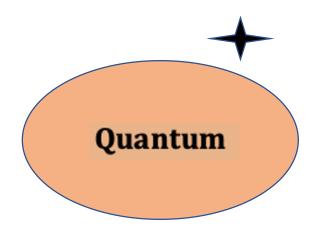
- Consider algebra \mathcal{F} with symbolic generators $a_{\alpha|x}$, $b_{\beta|y}$
- and relations

$$[a_{\alpha|x}, b_{\beta|y}] = 0, a_{\alpha|x}^2 = a_{\alpha|x}, \sum_{\alpha} a_{\alpha|x} = I, \dots$$

- (i.e. equiv.-classes of finite non-comm polynomials in symbols)
- This is an abstract *-algebra, the free *-algebra given the generators and relations.

Idea: A state implementing p(a, b|x, y) induces a state on \mathcal{F} . But there's an enumerable set of conditions for such a state existing.

Outer approximations 2/4



A *state* on a *-algebra is a linear functional satisfying

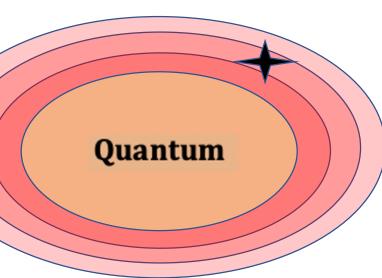
- $\rho(1) = 1$ [Normalization]
- $\rho(x^*x) \ge 0$ [Positivity]
- Suffices to check positivity on words in generators
- ⇒ Enumerable set of conditions (one SDP per degree)
- A concrete choice of commuting POVMs $A_{\alpha|x}$, $B_{\beta|y}$ gives a representation

$$\pi: a_{\alpha|x} \mapsto A_{\alpha|x}, b_{\beta|y} \mapsto B_{\beta|y}$$

...and a concrete state gives rise to an abstract state
 ρ(x) = ρ(π(x))

[Navascues, Pironio, Acin]

Outer approximations 3/4

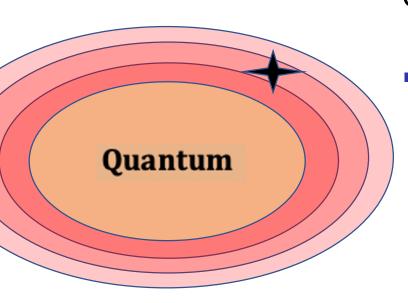


Given p(a, b | x, y), at level $n \ge 2$ of the hierarchy:

- \mathcal{F}_n := subspace of free algebra spanned by words of degree n
- Accept if there exist a linear functional ho_n on \mathcal{F}_n ,
- that is positive on \mathcal{F}_n and such that

$$p(\alpha,\beta|x,y) = \rho_n \big(a_{\alpha|x} b_{\beta|y} \big).$$

Outer approximations 4/4



Converse via GNS construction.

On the free algebra, define

 $||x|| := \sup\{||\pi(x)|| | \pi \text{ is a representation of } \mathcal{F}\}$

- Completion gives universal C*-algebra given gens and relations
- From all ρ_n , get state ρ on C* algebra realizing p(a, b|x, y)
- GNS construction gives **commuting operator** quantum model.
- (No obvious relations that are only realizable on tensor prods)

Optimization

Abstract point of view on hierarchy:

"Semi-definite programming over state space of universal C*-algebra":

Input

- Generators $\{g_i\}$
- Relations $\{a_j \ge 0\}$ for a_j in the free *-algebra
- Linear functions $\{l_k\}$ on the free *-algebra

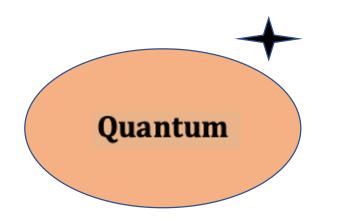
Output

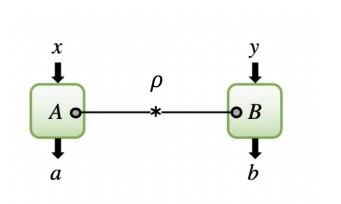
$$\min l_0(\rho)$$

s.t. $l_k(\rho) = 0 \quad \forall k \ge 1$

With minimum over states of the of the universal C^* -algebra.

Weak membership problem: Summary

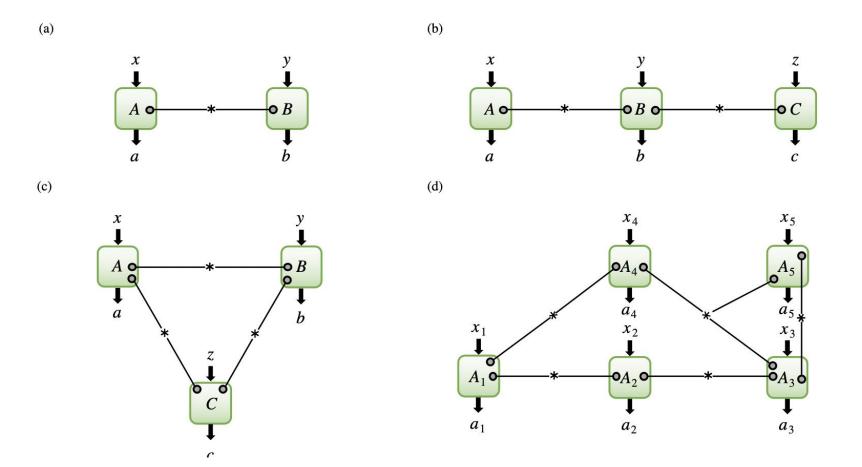




Given p(a, b | x, y), error bound ϵ .

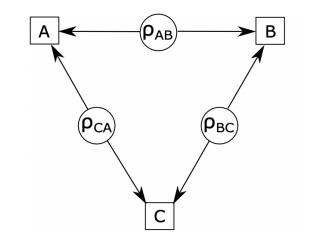
- If there is a co model, can find it (by enumerating dense set of models)
- If there is no co model, can witness that (by converging hierarchy of SDP relaxations)
- [MIP*=RE] \implies TP model is algorithmetically undecidable
- So we have done what we could.

Now make everything more complicated.



Can we solve the membership problem for those?

Two solutions

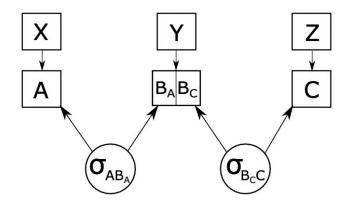


In general: A hack.

[arXiv:2110.14659]

For bi-linear scenario: No hack.

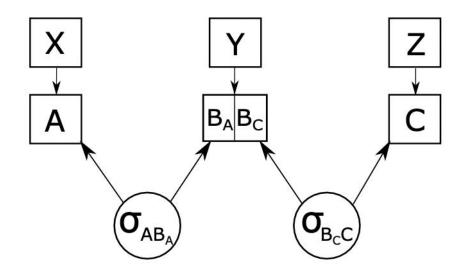
[arXiv:2212.11299]



Bi-local scenario

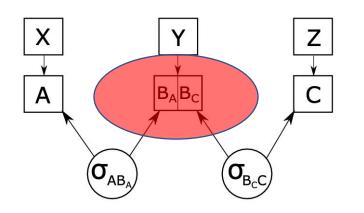
For now:

Work in commuting operator model



Quantum bilocal scenario

- $p(\alpha, \beta, \gamma | x, y, z)$ is compatible if \exists
- Commuting operator algebras $\mathcal{A}, \mathcal{B}_A, \mathcal{B}_C, \mathcal{C}$
- A joint state ρ that factorizes



$$\rho(a b_A b_C c) = \rho(a b_A)\rho(b_C c)$$

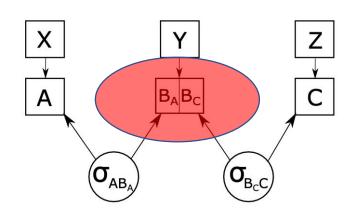
POVMs

 $\{A_{\alpha|x}\} \subset \mathcal{A}, \{B_{\beta|y}\} \subset \mathcal{B}_A \mathcal{B}_C, \{C_{\gamma|z}\} \subset \mathcal{C}$

such that,

$$p(\alpha,\beta,\gamma|x,y,z) = \rho(A_{\alpha|x}B_{\beta|y}C_{\gamma|z}).$$

Challenges



Consider the independence constraint

 $\rho(a b_A b_C c) = \rho(a b_A)\rho(b_C c)$

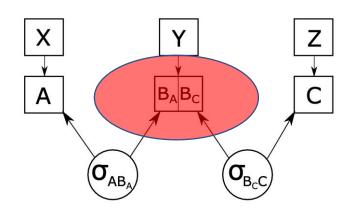
Challenge 1:

It is non-linear in the state

Challenge 2:

- It is phrased in terms of the *internal locality structure* of B
- We have no natural ansatz for $\mathcal{B}_A \mathcal{B}_C$.

Challenges



Ignore Challenge 2 for now and relax:

 $\rho(a \ b_A \ b_C \ c) = \rho(a \ b_A)\rho(b_C \ c) \implies \rho(ac) = \rho(a)\rho(c)$

Necessary condition for a quantum model:

 \exists state ρ of the universal algebra generated by POVMs, s.t.

$$p(\alpha, \beta, \gamma | x, y, z) = \rho(A_{\alpha | x} B_{\beta | y} C_{\gamma | z})$$

$$\rho(ac) = \rho(a)\rho(c)$$

Special case of "state polynomial optimization problem for universal C*-algebras".

Polynomial optimization

State polynomial optimization for universal C*-algebras:

Input

- Generators $\{g_i\}$
- Relations $\{a_i \ge 0\}$ for a_i nc-polynomial in generators.
- Polynomials p_k in states evaluated at words in generators

Output

$$\min p_0(\rho)$$

s.t. $p_k(\rho) = 0 \quad \forall k \ge 1$

With minimum over states of the of the universal C^* -algebra.

[Ligthart, DG 22; Ligthart, Gachechiladze, DG 20; Klep, Magron, Volcic, Wang 23]

Polynomial optimization

$$\min_{k \in \mathcal{P}_{k}(\rho) = 0 \quad \forall k \ge 1$$

Result:

 There is a monotonously convergent SDP hierarchy that solves the state-polynomial optimization problem.

Idea:

- Replace polynomials by their polarizations (=linearizations over many independent copies)
- Relax independence (non-linear) to symmetry (linear)
- Use suitable de Finetti Theorem

"Symmetry implies independence"

[Ligthart, DG 22; Ligthart, Gachechiladze, DG 20; Klep, Magron, Volcic, Wang 23]

Proof sketch 1/3: Polarization

$$\min p_0(\rho)$$

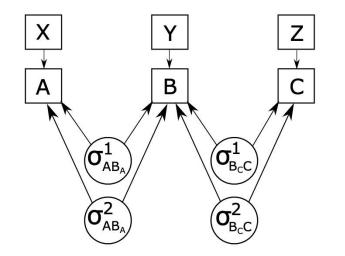
s.t. $p_k(\rho) = 0 \quad \forall k \ge 1$

Polarization

• Consider $\Pi = \rho^{\otimes 2}$. Then:

$$\rho(ac) - \rho(a)\rho(c) = 0 \quad \Leftrightarrow \quad \Pi\left(a^{(1)}c^{(1)} - a^{(1)}c^{(2)}\right) = 0$$

- That's a *linear* constraint on a symmetric *product* state
- Linear expression is the *polarization* of the polynomial
- Have to get rid of non-linear "productness" constraint.



[Ligthart, DG 22; C.f. (Quantum) Inflation technique, Wolfe, Spekkens, Fritz, Navascues, Pozas-K., Grinberg, Rosset, Acin, ...]

Proof sketch 2/3: de Finetti

$$\min p_0(\rho)$$

s.t. $p_k(\rho) = 0 \quad \forall k \ge 1$

de Finetti*

- Separable states = convex combinations of products
- For ∞-ly many copies, can enforce separability linearly:

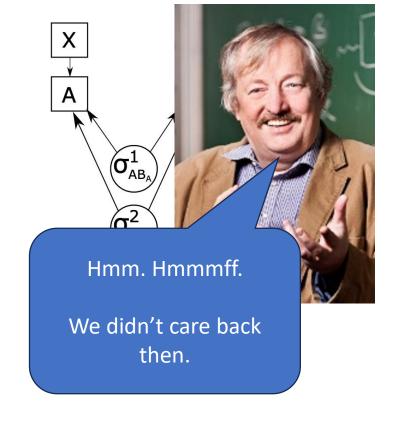
$$\Pi \text{ invariant under } S_{\infty} \quad \Leftrightarrow \quad \Pi = \int \rho^{\otimes \infty} \, \mathrm{d} \mu(\rho).$$

Remaining problem:

$$\Pi = \int \rho^{\otimes \infty} d\mu(\rho), \quad \Pi \left(a^{(1)} c^{(1)} - a^{(1)} c^{(2)} \right) = 0$$

...does not imply that every product fulfills constraint.

*None was published for commuting model, but Werner-Raggio's can be adapted



[Ligthart, DG 22; Ligthart, Gachechiladze, DG 20]

Proof sketch 3/3: Polarization

Polarization, once more!

• Take polarization of $p = (\rho(ac) - \rho(a)\rho(c))^2$

$$y := a^{(1)}c^{(1)}a^{(2)}c^{(2)} - 2a^{(1)}c^{(1)}a^{(2)}c^{(3)} + a^{(1)}c^{(2)}a^{(3)}c^{(4)}$$

Because the polynomial is non-negative

$$\Pi = \int \rho^{\otimes \infty} \, \mathrm{d} \mu(\rho), \qquad \Pi(y) = 0$$

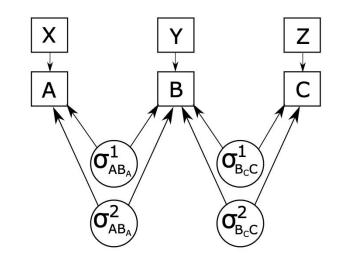
does imply that every product state satisfies

$$\rho(ac) - \rho(a)\rho(c) = 0$$

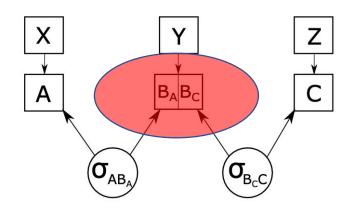
...can turn that into algorithm for state-polynomial optimization.

$$\min p_0(\rho)$$

s.t. $p_k(\rho) = 0 \quad \forall k \ge 1$



Back to Bi-local scenario



Can now solve:

 \exists state ρ of the universal algebra generated by POVMs, s.t.

$$p(\alpha, \beta, \gamma | x, y, z) = \rho(A_{\alpha | x} B_{\beta | y} C_{\gamma | z})$$

$$\rho(ac) = \rho(a)\rho(c)$$

But: This was only a relaxation of the actual constraint

$$\rho(a b_A b_C c) = \rho(a b_A)\rho(b_C c)$$

Turns out: In the bi-local scenario (and so far only there!) can construct a quantum model from a solution of the relaxation.

Proof idea 1/2: Recovering \mathcal{B}_A , \mathcal{B}_C

Assume:

There's a textbook quantum model given by

 $\left|\psi_{AB_{A}}\right\rangle \otimes \left|\psi_{B_{C}C}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{\mathcal{B}_{A}} \otimes \mathcal{H}_{\mathcal{B}_{C}} \otimes \mathcal{H}_{C}$

• with
$$|\psi_{AB_A}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_{\mathcal{B}_A}$$
 full Schmidt rank.

Then \mathcal{B}_A is the commutant of \mathcal{A} in $B(\mathcal{H}_A \otimes \mathcal{H}_{\mathcal{B}_A})$.

Proof idea 2/2: GNS for product states

- Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be the universal algebras generated by POVMs
- Let ρ be a state such that

$$\rho(a\,c)=\rho(a)\rho(c)$$

Then:

• GNS representation for *A*, *C* factorizes

$$\mathcal{H}_{\rho} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{C}}, \qquad |\rho\rangle = |\alpha\rangle \otimes |\gamma\rangle$$

Define

$$\mathcal{B}_{\mathcal{A}} = \pi(\mathcal{A})', \qquad \mathcal{B}_{\mathcal{C}} = \pi(\mathcal{C})'$$

• There's a channel $\Lambda: \mathcal{B} \to \mathcal{B}_{\mathcal{A}} \otimes \mathcal{B}_{\mathcal{C}}$ such that

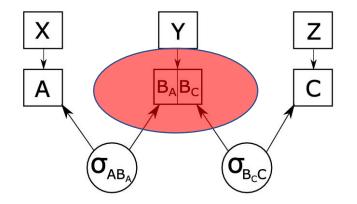
 $\rho(abc) = \langle \alpha \gamma | \pi(a) \Lambda(b) \pi(c) | \alpha \gamma \rangle$

Blackboard

Bi-local summary

Thm.: A set of correlations $p(\alpha, \beta, \gamma | x, y, z)$ has a quantum bilocal model if and only if the state-polynomial problem below is feasible.

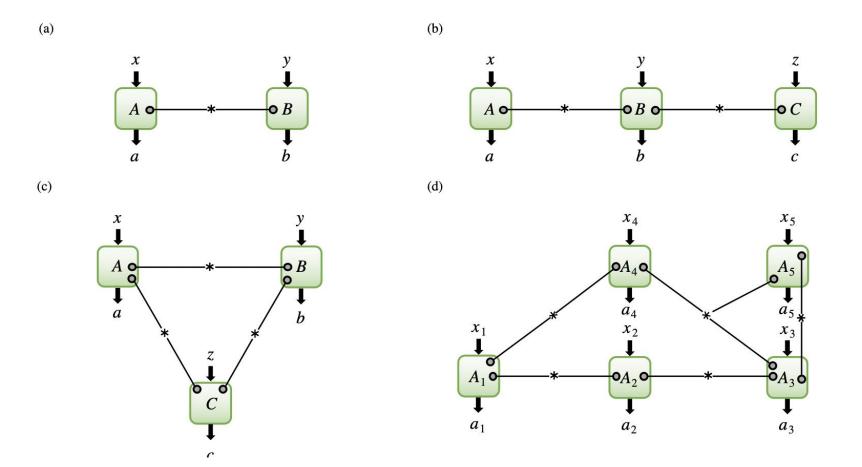
This can be checked using a monotonously convergent SDP hierarcy.



 \exists state ρ of the universal algebra generated by POVMs, s.t.

$$p(\alpha, \beta, \gamma | x, y, z) = \rho \left(A_{\alpha | x} B_{\beta | y} C_{\gamma | z} \right)$$
$$\rho(ac) = \rho(a)\rho(c)$$

Now make everything more complicated.



Can we solve the membership problem for those?

Recall "2nd Challenge"

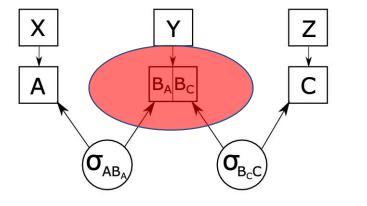
Difficulty:

Factorization constraint

$$\rho(a \ b_A \ b_C \ c) = \rho(a \ b_A)\rho(b_C \ c) \qquad (\checkmark)$$

involves operators b_a , b_c that need not lie in algebra generated by the observables.

- "Unclear how observables lies relative to the locality structure that defines causal structure."
- Could impose () if we knew which operators to impose it on.



Recall "2nd Challenge"

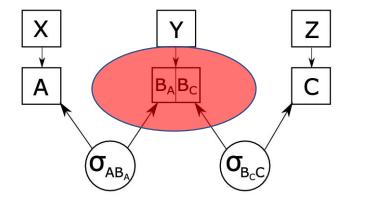
Difficulty:

Factorization constraint

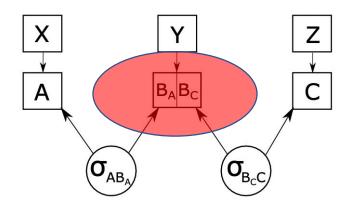
$$\rho(a \ b_A \ b_C \ c) = \rho(a \ b_A)\rho(b_C \ c) \qquad (\textcircled{\textcircled{\baselineskip}})$$

involves operators b_a , b_c that need not lie in algebra generated by the observables.

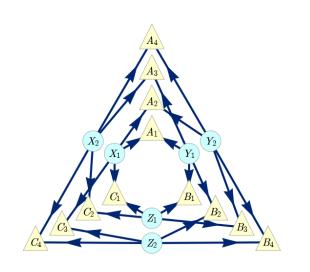
- "Unclear how observables lies relative to the locality structure that defines causal structure."
- Could impose () if we knew which operators to impose it on.



A hack



- "Top-down" doesn't work:
- Don't know how to write \mathcal{B}_A , \mathcal{B}_C in terms of observables.
- "Bottom-up" does!
- Introduce generators for \mathcal{B}_A , \mathcal{B}_C and expand observables



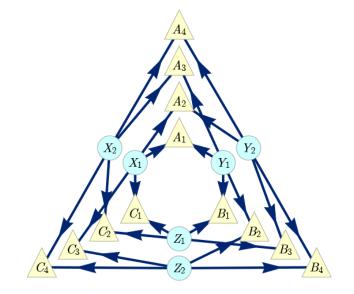
$$B_{\beta|y} = \sum_{i=1}^r b_a^{(i)} \cdot b_c^{(i)}$$

 Requires explicit upper bound on the Schmidt rank of POVM elements.

Network summary

Thm.: A set of correlations has a network quantum model **of bounded operator Schmidt rank** if and only if the associated state-polynomial problem is feasible.

This can be checked using a monotonously convergent SDP hierarcy.



The convergent SDP hierarchy is a variant of the *quantum inflation hierarchy* of Wolfe, Spekkens, Fritz, Navascues, Pozas-K., Grinberg, Rosset, Acin.

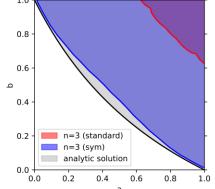
Outlook, Miscellanea, and Curiosities

• Recall: In bilocal scenario, GNS representation for \mathcal{A}, \mathcal{C} factorizes

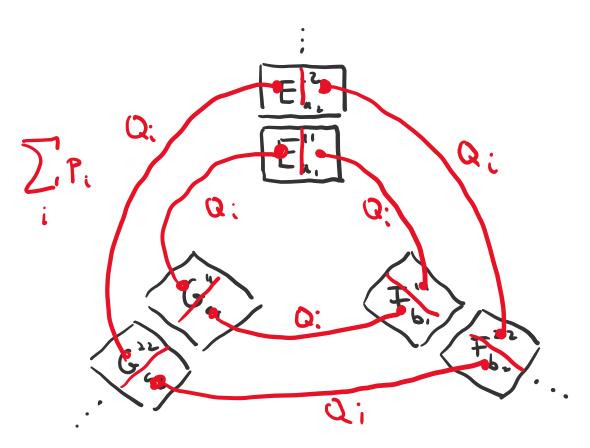
$$\mathcal{H}_{\rho} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{C}}$$

- Can turn this into algorithm for deciding membership with bi-partite tensor product model...
- ...for states that can be prepared using "entanglement swapping with bounded probability"

 Cute GPT generalization with applications to non-negative matrix rank. [with Martin Plávala].



Thank you!



David Gross, University of Cologne

Joint work with Laurens Ligthart and Mariami Gachechiladze