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Classical expanders

G a d-regular graph on n vertices (d edges at each vertex).
A its (normalized) adjacency matrix, i.e. the n×n matrix s.t. Akl = e(k , l)/d for all 1 6 k , l 6 n.

number of edges between vertices k and l

λ1(A), . . . ,λn(A) eigenvalues of A, ordered s.t. |λ1(A)|> · · ·> |λn(A)|.

G regular =⇒ λ1(A) = 1 with associated eigenvector the uniform probability u = (1/n, . . . ,1/n).
The spectral expansion parameter of G is λ(G) := |λ2(A)|.

Observation: λ(G) = |λ1(A− J)|, where J is the adjacency matrix of the complete graph on n
vertices, i.e. the matrix whose entries are all equal to 1/n.
−→ λ(G) is a distance measure between G and the complete graph.

Definition [Classical expander]

A d-regular graph G on n vertices is an expander if it is sparse (i.e. d � n) and spectrally
expanding (i.e. λ(G)� 1).

−→ G is both ‘economical’ and ‘resembling’ the complete graph.
For instance, a random walk supported on G converges fast to equilibrium.
Indeed, for any probability p on {1, . . . ,n}, ∀ q ∈ N, ‖Aqp−u‖1 6

√
n‖Aqp−u‖2 6

√
n λ(G)q .

exponential convergence, at rate | logλ(G)|
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Quantum analogue of the transition matrix associated to a regular graph

Classical - Quantum correspondence:
p ∈ Rn probability vector←→ ρ ∈Mn(C) density operator (PSD and trace 1 operator).
A : Rn→ Rn transition matrix←→ Φ : Mn(C)→Mn(C) quantum channel (CPTP map).
G regular: A leaves u invariant←→ Φ unital: Φ leaves I/n invariant.

Question: What is the analogue of the degree in the quantum setting?

Answer: The Kraus rank.
[ Recall: Given a CP map Φ on Mn(C), its Kraus representation is:

Φ : X ∈Mn(C) 7→
d

∑
i=1

Ki XK ∗i ∈Mn(C), where K1, . . . ,Kd ∈Mn(C). (?)

Kraus operators of Φ

The minimal d s.t. Φ can be written as (?) is the Kraus rank of Φ (it is always at most n2). ]

Indeed, the degree and the Kraus rank both quantify the 1-iteration spreading:
G a d-regular graph: If |supp(p)|= 1, then |supp(Ap)|6 d .
Φ a Kraus rank d unital quantum channel: If rank(ρ) = 1, then rank(Φ(ρ)) 6 d .
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Quantum expanders

Φ a Kraus rank d unital quantum channel on Mn(C).
λ1(Φ), . . . ,λn2 (Φ) eigenvalues of Φ, ordered s.t. |λ1(Φ)|> · · ·> |λn2 (Φ)|.

Φ unital =⇒ λ1(Φ) = 1 with associated eigenstate the maximally mixed state I/n.
The spectral expansion parameter of Φ is λ(Φ) := |λ2(Φ)|.

Observation: λ(Φ) = |λ1(Φ−Π)|, where Π is the fully depolarizing channel on Mn(C), i.e.
Π : X ∈Mn(C) 7→ Tr(X) I/n ∈Mn(C).
−→ λ(Φ) is a distance measure between Φ and the fully depolarizing channel.

Definition [Quantum expander]

A Kraus rank d unital quantum channel Φ on Mn(C) is an expander if it is little noisy (i.e. d � n2)
and spectrally expanding (i.e. λ(Φ)� 1).

−→ Φ is both ‘economical’ and ‘resembling’ the fully depolarizing channel.
For instance, the dynamics associated to Φ converges fast to equilibrium.
Indeed, for any state ρ on Cn, ∀ q ∈ N, ‖Φq(ρ)− I/n‖1 6

√
n‖Φq(ρ)− I/n‖2 6

√
n λ(Φ)q .

exponential convergence, at rate | logλ(Φ)|
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Constructions of optimal classical expanders

Fact: For any d-regular graph G on n vertices, λ(G) > 2
√

d−1/d−on(1).
−→ G is called a Ramanujan graph if it is an optimal expander, i.e. λ(G) 6 2

√
d−1/d .

Question: Do Ramanujan graphs exist?
1 Explicit constructions of exactly Ramanujan graphs only for d = pm + 1, p prime.
2 Random constructions of almost Ramanujan graphs for all d .
3 Existence of exactly Ramanujan graphs for all d .

In fact, for large n, almost all regular graphs are almost Ramanujan:

Theorem [Uniform random regular graph (Friedman, Bordenave)]

Fix d ∈ N. Let G be uniformly distributed on the set of d-regular graphs on n vertices.

Then, for all ε > 0, P
(

λ(G) 6
2
√

d−1
d

+ ε

)
= 1−on(1).

Remarks:
• First proven for a simpler model of random regular graphs: for d even, pick σ1, . . . ,σd/2 ∈ Sn

independent uniformly distributed and let G have edges {(k ,σi (k)),(k ,σ−1
i (k))}16k6n,16i6d/2.

• Result remains true for dn growing with n, up to a constant multiplicative factor:
P
(
λ(G) 6 C/

√
dn + ε

)
= 1−on(1).

permutation model
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Constructions of optimal quantum expanders

Fact: For any Kraus rank d unital quantum channel Φ on Mn(C), λ(Φ) > c/
√

d−on(1).
−→ Φ is considered an optimal expander if λ(Φ) 6 C/

√
d .

Question: Do optimal quantum expanders exist?
First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.
−→What about random constructions?

Question: How to sample a unital quantum channel randomly?

Idea: Pick random Kraus operators K1, . . . ,Kd ∈Mn(C), under the constraint

{
∑

d
i=1 K ∗i Ki = I

∑
d
i=1 Ki K ∗i = I

.

Let Φ : X ∈Mn(C) 7→ ∑
d
i=1 Ki XK ∗i ∈Mn(C) be the associated random unital quantum channel.

Theorem [Independent paired Haar unitaries as Kraus operators (Hastings, Pisier)]

Fix d ∈ N even. Pick U1, . . . ,Ud/2 ∈Mn(C) independent Haar unitaries. Let Ki = Ui/
√

d ,
1 6 i 6 d/2. The random CP map Φ associated to the Ki ’s, K ∗i ’s is TP and unital by construction.

Then, for all ε > 0, P
(

λ(Φ) 6
2
√

d−1
d

+ ε

)
= 1−on(1).

Remarks:
• Optimal constant for self-adjoint Kraus rank d unital quantum channels on Mn(C).
• Same result, up to a constant multiplicative factor, for d independent unitary Kraus operators.
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More random examples of optimal quantum expanders

Question: Can the previous result be extended to other (non self-adjoint) random models? And
to a regime where d is not fixed but grows with n?

Difficulty: Imposing that Φ is both TP and unital is very constraining.
However, the definition of expander can be generalized to ‘close to unital’ quantum channels,
whose fixed point ρ∗ has a large entropy: S(ρ∗) > αS(I/n) = α log n, for some 0 < α < 1.
[ Note: We now have λ(Φ) = |λ1(Φ−Πρ∗)|, where Πρ∗ : X ∈Mn(C) 7→ Tr(X)ρ∗ ∈Mn(C). ]

Classical analogy: Relaxation of the exact regularity condition, e.g. to look at Erdős-Rényi graphs.

Theorem [Independent Gaussians as Kraus operators (Lancien/Pérez-García)]

Pick G1, . . . ,Gd ∈Mn(C) independent Gaussian matrices. Let K̃i = Gi/
√

d , 1 6 i 6 d .

The random CP map Φ̃ associated to the K̃i ’s is not TP but almost: P
(
Σ := ∑

d
i=1 K̃ ∗i K̃i ' I

)
' 1.

With Ki = K̃i Σ
−1/2, 1 6 i 6 d , the random CP map Φ associated to the Ki ’s is TP by construction.

Then, P
(

S(ρ∗) > log n− C′√
d

and λ(Φ) 6
C√
d

)
> 1−e−cn, for C,C′,c > 0 constants.

i.i.d. Gaussian entries (mean 0 and variance 1/n)

Remark: Other model that was proven to be a.s. an optimal expander as n grows (for d fixed):
blocks of a Haar isometry V : Cn ↪→ Cn⊗Cd as Kraus operators (González-Guillén/Junge/Nechita).
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How much can the previous examples be generalized?

Theorem [Independent general random matrices as Kraus operators (Lancien/Youssef)]

1 Let A ∈Mn(R) be a doubly stochastic matrix s.t. |λ2(A)|6 C√
d

, with d > (log n)4.

E.g. A the adjacency matrix of a d-regular graph G on n vertices s.t. λ(G) 6 C√
d

.

2 Let W ∈Mn(C) be a random matrix with independent centered entries, s.t.

∀ 1 6 k , l 6 n, E|Wkl |2 = Akl and
(
E|Wkl |2p)1/p

6 C′pβAkl , p ∈ N.
[ β = 0: bounded entries. β = 1: sub-Gaussian entries. β = 2: sub-exponential entries. ]

3 Pick W1, . . . ,Wd ∈Mn(C) independent copies of W . Let Ki = Wi√
d

, 1 6 i 6 d , and Φ be the
random CP map with the Ki ’s as Kraus operators.

Then, Φ is on average TP and unital, and s.t. Eλ(Φ) 6
C′′√

d
.

Interest: Constructing a random optimal quantum expander from any optimal classical expander.
−→ Optimal quantum expanders can be obtained from random Kraus operators which are
sparse and whose entries have any distribution following the moments’ growth assumption.

Remark: With more assumptions, one could compute variances and show that conclusions hold
not only on average but also with positive / high probability.
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Proof idea to show that Eλ(Φ) 6 C/
√

d

Goal: In all cases, we want to upper bound E|λ2(Φ)|= E|λ1(Φ−Πρ∗)|.
First step: Upper bound E|λ1(Φ−E(Φ))| (and then show that E(Φ) is close to Πρ∗ ).

• Observation 1: |λ1(Ψ)|6 s1(Ψ) = ‖Ψ‖∞.
• Observation 2: ‖Ψ‖∞ = ‖MΨ‖∞, where for Ψ : X 7→ ∑

d
i=1 Ki XL∗i , MΨ = ∑

d
i=1 Ki ⊗ L̄i .

[ Identification Ψ : Mn(C)→Mn(C)≡MΨ : Cn⊗Cn→ Cn⊗Cn preserves the operator norm. ]
−→We want to upper bound E‖MΦ−E(MΦ)︸ ︷︷ ︸

=:X

‖∞, where MΦ = ∑
d
i=1 Ki ⊗ K̄i with the Ki ’s random.

• For concrete models, this can be done by a moments’ method:
By Jensen’s inequality, we have: ∀ p ∈ N, E‖X‖∞ 6 E‖X‖p 6 (ETr|X |p)1/p .
The term on the r.h.s. can be estimated and provides a good upper bound for p ' nγ.

Haar unitaries, Gaussians, blocks of Haar isometry

by Weingarten or Wick calculus

• For the general case, we use recent results on estimating the operator norm of random matrices
with dependencies and non-homogeneity (Bandeira/Boedihardjo/van Handel, Brailovskaya/van Handel):
Setting X = ∑

d
i=1 Zi , with Zi := Ki ⊗ K̄i −E(Ki ⊗ K̄i ), 1 6 i 6 d , we have for p ' log n,

E‖X‖∞ . ‖E(XX∗)‖1/2
∞ +‖E(X∗X)‖1/2

∞ + (log n)3/2‖Cov(X)‖1/2
∞ + (log n)2

( d

∑
i=1

ETr|Zi |p
)1/p

.
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Proof idea to show that Eλ(Φ) 6 C/
√

d

Goal: In all cases, we want to upper bound E|λ2(Φ)|= E|λ1(Φ−Πρ∗)|.
First step: Upper bound E|λ1(Φ−E(Φ))| (and then show that E(Φ) is close to Πρ∗ ).

• Observation 1: |λ1(Ψ)|6 s1(Ψ) = ‖Ψ‖∞.
• Observation 2: ‖Ψ‖∞ = ‖MΨ‖∞, where for Ψ : X 7→ ∑

d
i=1 Ki XL∗i , MΨ = ∑

d
i=1 Ki ⊗ L̄i .

[ Identification Ψ : Mn(C)→Mn(C)≡MΨ : Cn⊗Cn→ Cn⊗Cn preserves the operator norm. ]
−→We want to upper bound E‖MΦ−E(MΦ)︸ ︷︷ ︸

=:X

‖∞, where MΦ = ∑
d
i=1 Ki ⊗ K̄i with the Ki ’s random.

• For concrete models, this can be done by a moments’ method:
By Jensen’s inequality, we have: ∀ p ∈ N, E‖X‖∞ 6 E‖X‖p 6 (ETr|X |p)1/p .
The term on the r.h.s. can be estimated and provides a good upper bound for p ' nγ.

Haar unitaries, Gaussians, blocks of Haar isometry

by Weingarten or Wick calculus

• For the general case, we use recent results on estimating the operator norm of random matrices
with dependencies and non-homogeneity (Bandeira/Boedihardjo/van Handel, Brailovskaya/van Handel):
Setting X = ∑

d
i=1 Zi , with Zi := Ki ⊗ K̄i −E(Ki ⊗ K̄i ), 1 6 i 6 d , we have for p ' log n,

E‖X‖∞ . ‖E(XX∗)‖1/2
∞ +‖E(X∗X)‖1/2

∞ + (log n)3/2‖Cov(X)‖1/2
∞ + (log n)2

( d

∑
i=1

ETr|Zi |p
)1/p

.
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Plan

1 Introduction: classical and quantum expanders

2 Random constructions of expanders

3 Implications for decay of correlations in random matrix product states
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Model of random ‘physically relevant’ states of many-body quantum systems

Useful subset of many-body quantum states: matrix product states (MPS).
They admit an efficient description: number of parameters that scales linearly rather than
exponentially with the number of subsytems.
They are good approximations of several ‘physically relevant’ states, such as ground states
of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

Model of random translation-invariant (TI) MPS:

Pick K1, . . . ,Kd ∈Mn(C) at random.
Corresponding random TI MPS:
(M sites, physical dimension d , bond dimension n)

|χ〉=
d

∑
i1,...,iM =1

Tr(Ki1 · · ·KiM ) |i1〉⊗· · ·⊗|iM〉 ∈ (Cd )⊗M

d

nn
M

Associated random transfer (super) operator:

Φχ : X ∈Mn(C) 7→
d

∑
i=1

Ki XK ∗i ∈Mn(C)

[ Note: Φχ is the CP map version of the matrix
Tχ = ∑

d
i=1 Ki ⊗ K̄i ∈Mn(C)⊗Mn(C). ]

Cécilia Lancien Quantum expanders – Random constructions & Applications Quantum Information workshop, SRS Les Diablerets – February 26 2024 13



Model of random ‘physically relevant’ states of many-body quantum systems

Useful subset of many-body quantum states: matrix product states (MPS).
They admit an efficient description: number of parameters that scales linearly rather than
exponentially with the number of subsytems.
They are good approximations of several ‘physically relevant’ states, such as ground states
of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

Model of random translation-invariant (TI) MPS:

Pick K1, . . . ,Kd ∈Mn(C) at random.
Corresponding random TI MPS:
(M sites, physical dimension d , bond dimension n)

|χ〉=
d

∑
i1,...,iM =1

Tr(Ki1 · · ·KiM ) |i1〉⊗· · ·⊗|iM〉 ∈ (Cd )⊗M

d

nn
M

Associated random transfer (super) operator:

Φχ : X ∈Mn(C) 7→
d

∑
i=1

Ki XK ∗i ∈Mn(C)

[ Note: Φχ is the CP map version of the matrix
Tχ = ∑

d
i=1 Ki ⊗ K̄i ∈Mn(C)⊗Mn(C). ]

Cécilia Lancien Quantum expanders – Random constructions & Applications Quantum Information workshop, SRS Les Diablerets – February 26 2024 13



Correlations in a TI MPS and spectrum of its transfer operator

Correlations between the 1-site observables A,B separated by q sites in the MPS |χ〉 ∈ (Cd )⊗M :

γχ(A,B,q) :=
∣∣∣〈A⊗ I⊗q⊗B⊗ I⊗(M−q−2)

〉
χ
−
〈
A⊗ I⊗(M−1)

〉
χ

〈
I⊗(q+1)⊗B⊗ I⊗(M−q−2)

〉
χ

∣∣∣ .
Question: Do we have γχ(A,B,q) −→

q�M→∞
0? And if so, at which speed?

A B

M

q

A B
?'

M�q�1
×

Fact: Let λ1(Φχ), . . . ,λn2 (Φχ) be the eigenvalues of the transfer operator Φχ, ordered s.t.
|λ1(Φχ)|> · · ·> |λn2 (Φχ)|. Setting ε(χ) = |λ2(Φχ)|/|λ1(Φχ)|, we have

γχ(A,B,q) 6 C(χ)ε(χ)q‖A‖∞‖B‖∞ .

−→ If |λ2(Φχ)|< |λ1(Φχ)|, correlations between two 1-site observables decay exponentially
with the distance separating the two sites, at a rate τ(χ) = | log ε(χ)|.
Correlation length in the MPS χ: ξ(χ) := 1/τ(χ) = 1/| log ε(χ)|.

Conclusion: Estimating ξ(χ) boils down to estimating |λ1(Φχ)| and |λ2(Φχ)|.
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Decay of correlations in random TI MPS

Examples of distribution for K1, . . . ,Kd ∈Mn(C):
1 Ki = Ui/

√
d , 1 6 i 6 d , where the Ui ’s are i.i.d. Haar unitaries.

2 Ki = Vi , 1 6 i 6 d , where V = ∑
d
i=1 Vi ⊗|i〉 is a Haar isometry.

3 Ki = Gi/
√

d , 1 6 i 6 d , where the Gi ’s are i.i.d. Gaussians with mean 0 and variance 1/n.
(More generally: Ki = Wi/

√
d , 1 6 i 6 d , where the Wi ’s are i.i.d. matrices with independent

centered entries having variance profile a doubly stochastic matrix A s.t. |λ2(A)|6 C/
√

d .)

Theorem [Correlation length of a random TI MPS (Lancien/Pérez-García)]

Let |χ〉 ∈ (Cd )⊗M be a random TI MPS, with associated K1, . . . ,Kd ∈Mn(C) sampled according
to one of the models above.
For large n, its correlation length is typically upper bounded by 2/ log d .
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One-slide summary of “Implications for decay of correlations in random MPS”

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:
They admit an efficient description: number of parameters that scales linearly rather than
exponentially with the number of subsytems.
They are good approximations of several ‘physically relevant’ states, such as ground states
of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

Main result: Random MPS typically have correlations that decay exponentially fast, with a small
correlation length (Lancien/Pérez-García).

with the distance separating the sites
between observables measured on distinct sites

Proof strategy: Observe that the correlation length is given by 1/| log λ(Φ)| for Φ a random
quantum channel associated to the random MPS (its so-called transfer operator).
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Some perspectives

What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc)

Previously known constructions required a large amount of randomness.
First step towards derandomization: sparse matrices with ±1 entries as Kraus operators.
Other direction: unitary Kraus operators sampled according to a ‘simple’ measure that
‘resembles’ the uniform one, e.g. an approximate t-design (work in progress).

What about identifying the full spectral distribution of random quantum channels?

Known: for a random Kraus rank d quantum channel Φ : Mn(C)→Mn(C), the eigenvalues
of Φ−Πρ∗ are typically inside a disc of radius C/

√
d for large n.

But what is the exact radius and are they uniformly distributed inside this disc?
Answer in the self-adjoint case: asymptotically (as n,d → ∞) the spectrum of

√
d(Φ−Πρ∗)

follows a semi-circular distribution (Lancien/Oliveira Santos/Youssef).

Do the results about the typical spectral gap of random quantum channels remain true when
we impose extra symmetries on the model?

What about looking at other, related, notions of expansions, such as geometric ones
(Bannink/Briët/Labib/Maassen) or linear-algebraic ones (Li/Qiao/Wigderson/Wigderson/Zhang)?
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