Quantum expanders – Random constructions & Applications

Based on joint works with: David Pérez-Garcia (arXiv:1906.11682) and Pierre Youssef (arXiv:2302.07772)

Cécilia Lancien

Institut Fourier Grenoble & CNRS

Quantum Information workshop, SRS Les Diablerets - February 26 2024

Introduction: classical and quantum expanders

- Random constructions of expanders
- Implications for decay of correlations in random matrix product states

イロト イヨト イヨト イヨト

ж

Classical expanders

G a d-regular graph on n vertices (d edges at each vertex).

A its (normalized) adjacency matrix, i.e. the $n \times n$ matrix s.t. $A_{kl} = e(k, l)/d$ for all $1 \le k, l \le n$. number of edges between vertices *k* and $l \neq J$

 $\lambda_1(A), \dots, \lambda_n(A)$ eigenvalues of A, ordered s.t. $|\lambda_1(A)| \ge \dots \ge |\lambda_n(A)|$.

G regular $\implies \lambda_1(A) = 1$ with associated eigenvector the uniform probability u = (1/n, ..., 1/n). The *spectral expansion parameter* of *G* is $\lambda(G) := |\lambda_2(A)|$.

Observation: $\lambda(G) = |\lambda_1(A - J)|$, where *J* is the adjacency matrix of the *complete graph* on *n* vertices, i.e. the matrix whose entries are all equal to 1/n.

 $\longrightarrow \lambda(G)$ is a distance measure between *G* and the complete graph.

Classical expanders

G a d-regular graph on n vertices (d edges at each vertex).

A its (normalized) adjacency matrix, i.e. the $n \times n$ matrix s.t. $A_{kl} = e(k, l)/d$ for all $1 \le k, l \le n$. number of edges between vertices *k* and $l \neq J$

 $\lambda_1(A), \dots, \lambda_n(A)$ eigenvalues of A, ordered s.t. $|\lambda_1(A)| \ge \dots \ge |\lambda_n(A)|$.

G regular $\implies \lambda_1(A) = 1$ with associated eigenvector the uniform probability u = (1/n, ..., 1/n). The *spectral expansion parameter* of *G* is $\lambda(G) := |\lambda_2(A)|$.

Observation: $\lambda(G) = |\lambda_1(A - J)|$, where *J* is the adjacency matrix of the *complete graph* on *n* vertices, i.e. the matrix whose entries are all equal to 1/n.

 $\longrightarrow \lambda(G)$ is a distance measure between *G* and the complete graph.

Definition [Classical expander]

A *d*-regular graph *G* on *n* vertices is an *expander* if it is sparse (i.e. $d \ll n$) and spectrally expanding (i.e. $\lambda(G) \ll 1$).

 $\longrightarrow G$ is both 'economical' and 'resembling' the complete graph. For instance, a random walk supported on *G* converges fast to equilibrium. Indeed, for any probability *p* on $\{1, ..., n\}$, $\forall q \in \mathbf{N}$, $\|A^q p - u\|_1 \leq \sqrt{n} \|A^q p - u\|_2 \leq \sqrt{n} \lambda(G)^q$.

exponential convergence, at rate $|\log \lambda(G)| \downarrow$

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Quantum analogue of the transition matrix associated to a regular graph

Classical - Quantum correspondence:

- $p \in \mathbf{R}^n$ probability vector $\longleftrightarrow p \in \mathcal{M}_n(\mathbf{C})$ density operator (PSD and trace 1 operator).
- $A : \mathbf{R}^n \to \mathbf{R}^n$ transition matrix $\longleftrightarrow \Phi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$ quantum channel (CPTP map).
- *G* regular: *A* leaves *u* invariant $\leftrightarrow \Phi$ unital: Φ leaves I/n invariant.

Classical - Quantum correspondence:

- $\rho \in \mathbf{R}^n$ probability vector $\longleftrightarrow \rho \in \mathcal{M}_n(\mathbf{C})$ density operator (PSD and trace 1 operator).
- $A : \mathbf{R}^n \to \mathbf{R}^n$ transition matrix $\longleftrightarrow \Phi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$ quantum channel (CPTP map).
- *G* regular: *A* leaves *u* invariant $\leftrightarrow \Phi$ unital: Φ leaves I/n invariant.

Question: What is the analogue of the degree in the quantum setting?

Answer: The Kraus rank.

[Recall: Given a CP map Φ on $\mathcal{M}_n(\mathbf{C})$, its *Kraus representation* is:

$$\Phi: X \in \mathcal{M}_{n}(\mathbf{C}) \mapsto \sum_{i=1}^{d} K_{i} X K_{i}^{*} \in \mathcal{M}_{n}(\mathbf{C}), \text{ where } K_{1}, \dots, K_{d} \in \mathcal{M}_{n}(\mathbf{C}). \quad (\star)$$

$$\downarrow \text{ Kraus operators of } \Phi$$

The minimal *d* s.t. Φ can be written as (\star) is the *Kraus rank* of Φ (it is always at most n^2).

Indeed, the degree and the Kraus rank both quantify the 1-iteration spreading:

- *G* a *d*-regular graph: If $|\operatorname{supp}(p)| = 1$, then $|\operatorname{supp}(Ap)| \leq d$.
- Φ a Kraus rank *d* unital quantum channel: If rank(ρ) = 1, then rank($\Phi(\rho)$) $\leq d$.

Quantum expanders

 Φ a Kraus rank *d* unital quantum channel on $\mathcal{M}_n(\mathbf{C})$. $\lambda_1(\Phi), \dots, \lambda_{n^2}(\Phi)$ eigenvalues of Φ , ordered s.t. $|\lambda_1(\Phi)| \ge \dots \ge |\lambda_{n^2}(\Phi)|$.

 Φ unital $\Longrightarrow \lambda_1(\Phi) = 1$ with associated eigenstate the maximally mixed state I/n. The *spectral expansion parameter* of Φ is $\lambda(\Phi) := |\lambda_2(\Phi)|$.

Observation: $\lambda(\Phi) = |\lambda_1(\Phi - \Pi)|$, where Π is the *fully depolarizing channel* on $\mathcal{M}_n(\mathbf{C})$, i.e. $\Pi : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \operatorname{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C})$.

 $\longrightarrow \lambda(\Phi)$ is a distance measure between Φ and the fully depolarizing channel.

Quantum expanders

 Φ a Kraus rank *d* unital quantum channel on $\mathcal{M}_n(\mathbf{C})$. $\lambda_1(\Phi), \dots, \lambda_{n^2}(\Phi)$ eigenvalues of Φ , ordered s.t. $|\lambda_1(\Phi)| \ge \dots \ge |\lambda_{n^2}(\Phi)|$.

 Φ unital $\Longrightarrow \lambda_1(\Phi) = 1$ with associated eigenstate the maximally mixed state I/n. The *spectral expansion parameter* of Φ is $\lambda(\Phi) := |\lambda_2(\Phi)|$.

Observation: $\lambda(\Phi) = |\lambda_1(\Phi - \Pi)|$, where Π is the *fully depolarizing channel* on $\mathcal{M}_n(\mathbf{C})$, i.e. $\Pi : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \operatorname{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C})$.

 $\longrightarrow \lambda(\Phi)$ is a distance measure between Φ and the fully depolarizing channel.

Definition [Quantum expander]

A Kraus rank *d* unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$ is an *expander* if it is little noisy (i.e. $d \ll n^2$) and spectrally expanding (i.e. $\lambda(\Phi) \ll 1$).

Introduction: classical and quantum expanders

2 Random constructions of expanders

Implications for decay of correlations in random matrix product states

イロト イヨト イヨト イヨト

ж

Constructions of optimal classical expanders

Fact: For any *d*-regular graph *G* on *n* vertices, $\lambda(G) \ge 2\sqrt{d-1}/d - o_n(1)$.

 $\longrightarrow G$ is called a *Ramanujan graph* if it is an optimal expander, i.e. $\lambda(G) \leq 2\sqrt{d-1}/d$.

Question: Do Ramanujan graphs exist?

- Subscription Structions of exactly Ramanujan graphs only for $d = p^m + 1$, p prime.
- Pandom constructions of almost Ramanujan graphs for all d.
- Sexistence of exactly Ramanujan graphs for all *d*.

Constructions of optimal classical expanders

Fact: For any *d*-regular graph *G* on *n* vertices, $\lambda(G) \ge 2\sqrt{d-1}/d - o_n(1)$.

 \longrightarrow *G* is called a *Ramanujan graph* if it is an optimal expander, i.e. $\lambda(G) \leq 2\sqrt{d-1}/d$.

Question: Do Ramanujan graphs exist?

- Subscription Structions of exactly Ramanujan graphs only for $d = p^m + 1$, p prime.
- Pandom constructions of almost Ramanujan graphs for all d.
- Sexistence of exactly Ramanujan graphs for all d.

In fact, for large *n*, almost all regular graphs are almost Ramanujan:

Theorem [Uniform random regular graph (Friedman, Bordenave)]

Fix $d \in \mathbf{N}$. Let *G* be uniformly distributed on the set of *d*-regular graphs on *n* vertices. Then, for all $\varepsilon > 0$, $\mathbf{P}\left(\lambda(G) \leq \frac{2\sqrt{d-1}}{d} + \varepsilon\right) = 1 - o_n(1)$.

Remarks: remutation model

• First proven for a simpler model of random regular graphs: for *d* even, pick $\sigma_1, \ldots, \sigma_{d/2} \in S_n$ independent uniformly distributed and let *G* have edges $\{(k, \sigma_i(k)), (k, \sigma_i^{-1}(k))\}_{1 \le k \le n, 1 \le i \le d/2}$.

• Result remains true for d_n growing with n, up to a constant multiplicative factor:

$$\mathbf{P}(\lambda(G) \leq C/\sqrt{d_n} + \varepsilon) = 1 - o_n(1).$$

・ロト・ (日下・ (日下・ (日下・ (日下)))

Constructions of optimal quantum expanders

Fact: For any Kraus rank *d* unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, $\lambda(\Phi) \ge c/\sqrt{d} - o_n(1)$. $\longrightarrow \Phi$ is considered an optimal expander if $\lambda(\Phi) \le C/\sqrt{d}$.

Question: Do optimal quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

 \longrightarrow What about random constructions?

Constructions of optimal quantum expanders

Fact: For any Kraus rank *d* unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, $\lambda(\Phi) \ge c/\sqrt{d} - o_n(1)$. $\longrightarrow \Phi$ is considered an optimal expander if $\lambda(\Phi) \le C/\sqrt{d}$.

Question: Do optimal quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

 \longrightarrow What about random constructions?

Question: How to sample a unital quantum channel randomly?

Idea: Pick random Kraus operators $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$, under the constraint $\begin{cases} \sum_{i=1}^d K_i^* K_i = I \\ \sum_{i=1}^d K_i^* K_i = I \end{cases}$.

Let $\Phi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \sum_{i=1}^d \kappa_i X \kappa_i^* \in \mathcal{M}_n(\mathbf{C})$ be the associated random unital quantum channel.

・ロト・ (日下・ (日下・ (日下・ (日下)))

Constructions of optimal quantum expanders

Fact: For any Kraus rank *d* unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, $\lambda(\Phi) \ge c/\sqrt{d} - o_n(1)$. $\longrightarrow \Phi$ is considered an optimal expander if $\lambda(\Phi) \le C/\sqrt{d}$.

Question: Do optimal quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

 \longrightarrow What about random constructions?

Question: How to sample a unital quantum channel randomly?

Idea: Pick random Kraus operators $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$, under the constraint $\begin{cases} \sum_{i=1}^d K_i^* K_i = I \\ \sum_{i=1}^d K_i K_i^* = I \end{cases}$.

Let $\Phi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \sum_{i=1}^d \kappa_i X \kappa_i^* \in \mathcal{M}_n(\mathbf{C})$ be the associated random unital quantum channel.

Theorem [Independent paired Haar unitaries as Kraus operators (Hastings, Pisier)]

Fix $d \in \mathbf{N}$ even. Pick $U_1, \ldots, U_{d/2} \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = U_i/\sqrt{d}$, $1 \leq i \leq d/2$. The random CP map Φ associated to the K_i 's, K_i^* 's is TP and unital by construction. Then, for all $\varepsilon > 0$, $\mathbf{P}\left(\lambda(\Phi) \leq \frac{2\sqrt{d-1}}{d} + \varepsilon\right) = 1 - o_n(1)$.

Remarks:

- Optimal constant for self-adjoint Kraus rank d unital quantum channels on $\mathcal{M}_n(\mathbf{C})$.
- Same result, up to a constant multiplicative factor, for *d* independent unitary Kraus operators.

More random examples of optimal quantum expanders

Question: Can the previous result be extended to other (non self-adjoint) random models? And to a regime where d is not fixed but grows with n?

Difficulty: Imposing that Φ is both TP and unital is very constraining. However, the definition of expander can be generalized to 'close to unital' quantum channels, whose fixed point ρ_* has a large entropy: $S(\rho_*) \ge \alpha S(l/n) = \alpha \log n$, for some $0 < \alpha < 1$. [Note: We now have $\lambda(\Phi) = |\lambda_1(\Phi - \Pi_{\rho^*})|$, where $\Pi_{\rho_*} : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \text{Tr}(X)\rho_* \in \mathcal{M}_n(\mathbf{C})$.]

Classical analogy: Relaxation of the exact regularity condition, e.g. to look at Erdős-Rényi graphs.

More random examples of optimal quantum expanders

Question: Can the previous result be extended to other (non self-adjoint) random models? And to a regime where d is not fixed but grows with n?

Difficulty: Imposing that Φ is both TP and unital is very constraining. However, the definition of expander can be generalized to 'close to unital' quantum channels, whose fixed point ρ_* has a large entropy: $S(\rho_*) \ge \alpha S(l/n) = \alpha \log n$, for some $0 < \alpha < 1$. [Note: We now have $\lambda(\Phi) = |\lambda_1(\Phi - \Pi_{\rho^*})|$, where $\Pi_{\rho_*} : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \text{Tr}(X) \rho_* \in \mathcal{M}_n(\mathbf{C})$.]

Classical analogy: Relaxation of the exact regularity condition, e.g. to look at Erdős-Rényi graphs.

Theorem [Independent Gaussians as Kraus operators (Lancien/Pérez-García)]

Pick $G_1, \ldots, G_d \in \mathcal{M}_n(\mathbf{C})$ independent Gaussian matrices. Let $\widetilde{K}_i = G_i/\sqrt{d}, 1 \le i \le d$. i.i.d. Gaussian entries (mean 0 and variance 1/n) The random CP map $\widetilde{\Phi}$ associated to the \widetilde{K}_i 's is not TP but almost: $\mathbf{P}\left(\Sigma := \sum_{i=1}^d \widetilde{K}_i^* \widetilde{K}_i \simeq I\right) \simeq 1$. With $K_i = \widetilde{K}_i \Sigma^{-1/2}, 1 \le i \le d$, the random CP map Φ associated to the K_i 's is TP by construction. Then, $\mathbf{P}\left(S(\rho_*) \ge \log n - \frac{C'}{\sqrt{d}} \text{ and } \lambda(\Phi) \le \frac{C}{\sqrt{d}}\right) \ge 1 - e^{-cn}$, for C, C', c > 0 constants.

Remark: Other model that was proven to be a.s. an optimal expander as *n* grows (for *d* fixed): blocks of a Haar isometry $V : \mathbf{C}^n \hookrightarrow \mathbf{C}^n \otimes \mathbf{C}^d$ as Kraus operators (González-Guillén/Junge/Nechita).

How much can the previous examples be generalized?

Theorem [Independent general random matrices as Kraus operators (Lancien/Youssef)]

- Let $A \in \mathcal{M}_n(\mathbf{R})$ be a doubly stochastic matrix s.t. $|\lambda_2(A)| \leq \frac{C}{\sqrt{d}}$, with $d \geq (\log n)^4$. E.g. *A* the adjacency matrix of a *d*-regular graph *G* on *n* vertices s.t. $\lambda(G) \leq \frac{C}{\sqrt{d}}$.
- **2** Let $W \in \mathcal{M}_n(\mathbf{C})$ be a random matrix with independent centered entries, s.t. $\forall 1 \leq k, l \leq n, \mathbf{E}|W_{kl}|^2 = A_{kl}$ and $(\mathbf{E}|W_{kl}|^{2p})^{1/p} \leq C'p^{\beta}A_{kl}, p \in \mathbf{N}$. [$\beta = 0$: bounded entries. $\beta = 1$: sub-Gaussian entries. $\beta = 2$: sub-exponential entries.]
- Pick $W_1, ..., W_d \in \mathcal{M}_n(\mathbf{C})$ independent copies of *W*. Let $K_i = \frac{W_i}{\sqrt{d}}$, $1 \le i \le d$, and Φ be the random CP map with the K_i 's as Kraus operators.

Then, Φ is on average TP and unital, and s.t. $\mathbf{E}\lambda(\Phi) \leqslant \frac{C''}{\sqrt{d}}$.

(日) (周) (日) (日)

How much can the previous examples be generalized?

Theorem [Independent general random matrices as Kraus operators (Lancien/Youssef)]

- Let $A \in \mathcal{M}_n(\mathbf{R})$ be a doubly stochastic matrix s.t. $|\lambda_2(A)| \leq \frac{C}{\sqrt{d}}$, with $d \geq (\log n)^4$. E.g. *A* the adjacency matrix of a *d*-regular graph *G* on *n* vertices s.t. $\lambda(G) \leq \frac{C}{\sqrt{d}}$.
- **Q** Let $W \in \mathcal{M}_n(\mathbf{C})$ be a random matrix with independent centered entries, s.t. $\forall 1 \leq k, l \leq n, \mathbf{E}|W_{kl}|^2 = A_{kl}$ and $(\mathbf{E}|W_{kl}|^{2p})^{1/p} \leq C' p^{\beta} A_{kl}, p \in \mathbf{N}$. [$\beta = 0$: bounded entries. $\beta = 1$: sub-Gaussian entries. $\beta = 2$: sub-exponential entries.]
- Pick $W_1, ..., W_d \in \mathcal{M}_n(\mathbf{C})$ independent copies of *W*. Let $K_i = \frac{W_i}{\sqrt{d}}$, $1 \le i \le d$, and Φ be the random CP map with the K_i 's as Kraus operators.

Then, Φ is on average TP and unital, and s.t. $\mathbf{E}\lambda(\Phi) \leqslant \frac{C''}{\sqrt{d}}$.

Interest: Constructing a random optimal quantum expander from any optimal classical expander. \rightarrow Optimal quantum expanders can be obtained from random Kraus operators which are sparse and whose entries have any distribution following the moments' growth assumption.

How much can the previous examples be generalized?

Theorem [Independent general random matrices as Kraus operators (Lancien/Youssef)]

- Let $A \in \mathcal{M}_n(\mathbf{R})$ be a doubly stochastic matrix s.t. $|\lambda_2(A)| \leq \frac{C}{\sqrt{d}}$, with $d \geq (\log n)^4$. E.g. *A* the adjacency matrix of a *d*-regular graph *G* on *n* vertices s.t. $\lambda(G) \leq \frac{C}{\sqrt{d}}$.
- **Q** Let $W \in \mathcal{M}_n(\mathbf{C})$ be a random matrix with independent centered entries, s.t. $\forall 1 \leq k, l \leq n, \mathbf{E}|W_{kl}|^2 = A_{kl}$ and $(\mathbf{E}|W_{kl}|^{2p})^{1/p} \leq C' p^{\beta} A_{kl}, p \in \mathbf{N}$. [$\beta = 0$: bounded entries. $\beta = 1$: sub-Gaussian entries. $\beta = 2$: sub-exponential entries.]
- Pick $W_1, ..., W_d \in \mathcal{M}_n(\mathbb{C})$ independent copies of *W*. Let $K_i = \frac{W_i}{\sqrt{d}}$, 1 ≤ *i* ≤ *d*, and Φ be the random CP map with the K_i 's as Kraus operators.

Then, Φ is on average TP and unital, and s.t. $\mathbf{E}\lambda(\Phi) \leqslant \frac{C''}{\sqrt{d}}$.

Interest: Constructing a random optimal quantum expander from any optimal classical expander. \rightarrow Optimal quantum expanders can be obtained from random Kraus operators which are sparse and whose entries have any distribution following the moments' growth assumption.

Remark: With more assumptions, one could compute variances and show that conclusions hold not only on average but also with positive / high probability.

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leq C/\sqrt{d}$

Goal: In all cases, we want to upper bound $\mathbf{E}[\lambda_2(\Phi)] = \mathbf{E}[\lambda_1(\Phi - \Pi_{\rho^*})]$. First step: Upper bound $\mathbf{E}[\lambda_1(\Phi - \mathbf{E}(\Phi))]$ (and then show that $\mathbf{E}(\Phi)$ is close to Π_{ρ^*}).

▲□▶▲□▶▲□▶▲□▶ = のQ@

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leqslant C/\sqrt{d}$

Goal: In all cases, we want to upper bound $\mathbf{E}|\lambda_2(\Phi)| = \mathbf{E}|\lambda_1(\Phi - \Pi_{\rho^*})|$. First step: Upper bound $\mathbf{E}|\lambda_1(\Phi - \mathbf{E}(\Phi))|$ (and then show that $\mathbf{E}(\Phi)$ is close to Π_{ρ^*}).

• Observation 1:
$$|\lambda_1(\Psi)| \leq s_1(\Psi) = ||\Psi||_{\infty}$$
.
• Observation 2: $||\Psi||_{\infty} = ||M_{\Psi}||_{\infty}$, where for $\Psi : X \mapsto \sum_{i=1}^{d} K_i X L_i^*$, $M_{\Psi} = \sum_{i=1}^{d} K_i \otimes \overline{L}_i$.
[Identification $\Psi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C}) \equiv M_{\Psi} : \mathbf{C}^n \otimes \mathbf{C}^n \to \mathbf{C}^n \otimes \mathbf{C}^n$ preserves the operator norm.]
 \longrightarrow We want to upper bound $\mathbf{E} ||\underbrace{\mathcal{M}_{\Phi} - \mathbf{E}(\mathcal{M}_{\Phi})}_{=:X}||_{\infty}$, where $M_{\Phi} = \sum_{i=1}^{d} K_i \otimes \overline{K}_i$ with the K_i 's random

イロン 不得 とくき とくき とうき

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leqslant C/\sqrt{d}$

Goal: In all cases, we want to upper bound $\mathbf{E}|\lambda_2(\Phi)| = \mathbf{E}|\lambda_1(\Phi - \Pi_{\rho^*})|$. First step: Upper bound $\mathbf{E}|\lambda_1(\Phi - \mathbf{E}(\Phi))|$ (and then show that $\mathbf{E}(\Phi)$ is close to Π_{ρ^*}).

• Observation 1:
$$|\lambda_1(\Psi)| \leq s_1(\Psi) = \|\Psi\|_{\infty}$$
.
• Observation 2: $\|\Psi\|_{\infty} = \|M_{\Psi}\|_{\infty}$, where for $\Psi : X \mapsto \sum_{i=1}^{d} K_i X L_i^*$, $M_{\Psi} = \sum_{i=1}^{d} K_i \otimes \overline{L}_i$.
[Identification $\Psi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}) \equiv M_{\Psi} : \mathbb{C}^n \otimes \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^n$ preserves the operator

$$\longrightarrow$$
 We want to upper bound $\mathbf{E} \| \underbrace{M_{\Phi} - \mathbf{E}(M_{\Phi})}_{=:X} \|_{\infty}$, where $M_{\Phi} = \sum_{i=1}^{d} K_i \otimes \overline{K}_i$ with the K_i 's random.

⊢ Haar unitaries, Gaussians, blocks of Haar isometry

• For concrete models, this can be done by a moments' method:

By Jensen's inequality, we have: $\forall p \in \mathbb{N}$, $\mathbb{E}||X||_{\infty} \leq \mathbb{E}||X||_{p} \leq (\mathbb{E}\operatorname{Tr}|X|^{p})^{1/p}$.

The term on the r.h.s. can be estimated and provides a good upper bound for $p \simeq n^{\gamma}$.

L→ by Weingarten or Wick calculus

• For the general case, we use recent results on estimating the operator norm of random matrices with dependencies and non-homogeneity (Bandeira/Boedihardjo/van Handel, Brailovskaya/van Handel): Setting $X = \sum_{i=1}^{d} Z_i$, with $Z_i := K_i \otimes \overline{K}_i - \mathbf{E}(K_i \otimes \overline{K}_i)$, $1 \le i \le d$, we have for $p \simeq \log n$,

$$\mathbf{E}\|X\|_{\infty} \lesssim \|\mathbf{E}(XX^*)\|_{\infty}^{1/2} + \|\mathbf{E}(X^*X)\|_{\infty}^{1/2} + (\log n)^{3/2}\|\mathbf{Cov}(X)\|_{\infty}^{1/2} + (\log n)^2 \Big(\sum_{i=1}^d \mathbf{E}\operatorname{Tr}|Z_i|^p\Big)^{1/p}.$$

norm. 1

Introduction: classical and quantum expanders

2) Random constructions of expanders

Implications for decay of correlations in random matrix product states

イロト 不得 とくほと くほとう

ж

Model of random 'physically relevant' states of many-body quantum systems

Useful subset of many-body quantum states: matrix product states (MPS).

- They admit an *efficient description*: number of parameters that scales linearly rather than exponentially with the number of subsytems.
- They are *good approximations of several 'physically relevant' states*, such as ground states of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

Model of random 'physically relevant' states of many-body quantum systems

Useful subset of many-body quantum states: matrix product states (MPS).

- They admit an *efficient description*: number of parameters that scales linearly rather than exponentially with the number of subsytems.
- They are *good approximations of several 'physically relevant' states*, such as ground states of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

Model of random translation-invariant (TI) MPS:

Pick $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$ at random. Corresponding random TI MPS: (*M* sites, *physical dimension d*, *bond dimension n*) $|\chi\rangle = \sum_{i_1,\ldots,i_M=1}^d \operatorname{Tr}(K_{i_1}\cdots K_{i_M})|_{i_1}\rangle \otimes \cdots \otimes |i_M\rangle \in (\mathbf{C}^d)^{\otimes M}$

Associated random transfer (super) operator:

$$\Phi_{\boldsymbol{\chi}}: \boldsymbol{X} \in \mathcal{M}_n(\boldsymbol{\mathsf{C}}) \mapsto \sum_{i=1}^d \boldsymbol{\mathit{K}}_i \boldsymbol{\mathit{X}} \boldsymbol{\mathit{K}}_i^* \in \mathcal{M}_n(\boldsymbol{\mathsf{C}})$$

[Note: Φ_{χ} is the CP map version of the matrix $T_{\chi} = \sum_{i=1}^{d} K_i \otimes \bar{K}_i \in \mathcal{M}_n(\mathbf{C}) \otimes \mathcal{M}_n(\mathbf{C})$.]

Correlations in a TI MPS and spectrum of its transfer operator

Correlations between the 1-site observables *A*, *B* separated by *q* sites in the MPS $|\chi\rangle \in (\mathbf{C}^d)^{\otimes M}$: $\gamma_{\chi}(A, B, q) := \left| \langle A \otimes I^{\otimes q} \otimes B \otimes I^{\otimes (M-q-2)} \rangle_{\chi} - \langle A \otimes I^{\otimes (M-1)} \rangle_{\chi} \langle I^{\otimes (q+1)} \otimes B \otimes I^{\otimes (M-q-2)} \rangle_{\chi} \right|.$

Question: Do we have $\gamma_{\chi}(A, B, q) \xrightarrow[q \ll M \to \infty]{} 0$? And if so, at which speed?

ヘロト 人間 とくほ とくほ とう

Correlations in a TI MPS and spectrum of its transfer operator

Correlations between the 1-site observables *A*, *B* separated by *q* sites in the MPS $|\chi\rangle \in (\mathbf{C}^d)^{\otimes M}$: $\gamma_{\chi}(A, B, q) := \left| \langle A \otimes I^{\otimes q} \otimes B \otimes I^{\otimes (M-q-2)} \rangle_{\chi} - \langle A \otimes I^{\otimes (M-1)} \rangle_{\chi} \langle I^{\otimes (q+1)} \otimes B \otimes I^{\otimes (M-q-2)} \rangle_{\chi} \right|.$

Question: Do we have $\gamma_{\chi}(A, B, q) \xrightarrow[q \ll M \to \infty]{} 0$? And if so, at which speed?

Fact: Let $\lambda_1(\Phi_{\chi}), \ldots, \lambda_{n^2}(\Phi_{\chi})$ be the eigenvalues of the transfer operator Φ_{χ} , ordered s.t. $|\lambda_1(\Phi_{\chi})| \ge \cdots \ge |\lambda_{n^2}(\Phi_{\chi})|$. Setting $\epsilon(\chi) = |\lambda_2(\Phi_{\chi})|/|\lambda_1(\Phi_{\chi})|$, we have

 $\gamma_{\chi}(A, B, q) \leqslant C(\chi) \varepsilon(\chi)^q \|A\|_{\infty} \|B\|_{\infty}.$

 $\begin{array}{l} \longrightarrow \text{ If } |\lambda_2(\Phi_\chi)| < |\lambda_1(\Phi_\chi)|, \text{ correlations between two 1-site observables decay exponentially} \\ \text{with the distance separating the two sites, at a rate } \tau(\chi) = |\log \epsilon(\chi)|. \\ \text{Correlation length in the MPS } \chi: \xi(\chi) := 1/\tau(\chi) = 1/|\log \epsilon(\chi)|. \end{array}$

Conclusion: Estimating $\xi(\chi)$ boils down to estimating $|\lambda_1(\Phi_{\chi})|$ and $|\lambda_2(\Phi_{\chi})|$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Decay of correlations in random TI MPS

Examples of distribution for $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$:

- $K_i = U_i / \sqrt{d}$, $1 \le i \le d$, where the U_i 's are i.i.d. Haar unitaries.
- **2** $K_i = V_i$, $1 \leq i \leq d$, where $V = \sum_{i=1}^d V_i \otimes |i\rangle$ is a Haar isometry.
- W_i = G_i/√d, 1 ≤ i ≤ d, where the G_i's are i.i.d. Gaussians with mean 0 and variance 1/n. (More generally: K_i = W_i/√d, 1 ≤ i ≤ d, where the W_i's are i.i.d. matrices with independent centered entries having variance profile a doubly stochastic matrix A s.t. |λ₂(A)| ≤ C/√d.)

Decay of correlations in random TI MPS

Examples of distribution for $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$:

- $K_i = U_i / \sqrt{d}$, $1 \le i \le d$, where the U_i 's are i.i.d. Haar unitaries.
- **2** $K_i = V_i$, $1 \le i \le d$, where $V = \sum_{i=1}^d V_i \otimes |i\rangle$ is a Haar isometry.
- W_i = G_i/√d, 1 ≤ i ≤ d, where the G_i's are i.i.d. Gaussians with mean 0 and variance 1/n. (More generally: K_i = W_i/√d, 1 ≤ i ≤ d, where the W_i's are i.i.d. matrices with independent centered entries having variance profile a doubly stochastic matrix A s.t. |λ₂(A)| ≤ C/√d.)

Theorem [Correlation length of a random TI MPS (Lancien/Pérez-García)]

Let $|\chi\rangle \in (\mathbf{C}^d)^{\otimes M}$ be a random TI MPS, with associated $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$ sampled according to one of the models above.

For large *n*, its correlation length is typically upper bounded by $2/\log d$.

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:

- They admit an *efficient description*: number of parameters that scales linearly rather than exponentially with the number of subsytems.
- They are *good approximations of several 'physically relevant' states*, such as ground states of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:

- They admit an *efficient description*: number of parameters that scales linearly rather than exponentially with the number of subsytems.
- They are *good approximations of several 'physically relevant' states*, such as ground states of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

with the distance separating the sites \prec

between observables measured on distinct sites \blacktriangleleft

Main result: Random MPS typically have correlations that decay exponentially fast, with a *small correlation length* (Lancien/Pérez-García).

Proof strategy: Observe that the correlation length is given by $1/|\log \lambda(\Phi)|$ for Φ a random quantum channel associated to the random MPS (its so-called *transfer operator*).

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 What about *explicit constructions* of optimal quantum expanders? Important for applications (cryptography, error correction, condensed matter physics, etc)

Previously known constructions required a large amount of randomness. First step towards *derandomization*: sparse matrices with ± 1 entries as Kraus operators. Other direction: unitary Kraus operators sampled according to a 'simple' measure that 'resembles' the uniform one, e.g. an approximate *t*-design (work in progress).

 What about *explicit constructions* of optimal quantum expanders? Important for applications (cryptography, error correction, condensed matter physics, etc)

Previously known constructions required a large amount of randomness. First step towards *derandomization*: sparse matrices with ± 1 entries as Kraus operators. Other direction: unitary Kraus operators sampled according to a 'simple' measure that 'resembles' the uniform one, e.g. an approximate *t*-design (work in progress).

What about identifying the full spectral distribution of random quantum channels?

Known: for a random Kraus rank *d* quantum channel $\Phi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$, the eigenvalues of $\Phi - \prod_{\rho_*}$ are typically inside a disc of radius C/\sqrt{d} for large *n*. But what is the exact radius and are they uniformly distributed inside this disc? Answer in the self-adjoint case: asymptotically (as $n, d \to \infty$) the spectrum of $\sqrt{d}(\Phi - \prod_{\rho_*})$ follows a semi-circular distribution (Lancien/Oliveira Santos/Youssef).

 What about *explicit constructions* of optimal quantum expanders? Important for applications (cryptography, error correction, condensed matter physics, etc)

Previously known constructions required a large amount of randomness. First step towards *derandomization*: sparse matrices with ± 1 entries as Kraus operators. Other direction: unitary Kraus operators sampled according to a 'simple' measure that 'resembles' the uniform one, e.g. an approximate *t*-design (work in progress).

• What about identifying the full spectral distribution of random quantum channels?

Known: for a random Kraus rank *d* quantum channel $\Phi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$, the eigenvalues of $\Phi - \prod_{\rho_*}$ are typically inside a disc of radius C/\sqrt{d} for large *n*. But what is the exact radius and are they uniformly distributed inside this disc? Answer in the self-adjoint case: asymptotically (as $n, d \to \infty$) the spectrum of $\sqrt{d}(\Phi - \prod_{\rho_*})$ follows a semi-circular distribution (Lancien/Oliveira Santos/Youssef).

• Do the results about the typical spectral gap of random quantum channels remain true when we impose *extra symmetries* on the model?

• What about *explicit constructions* of optimal quantum expanders? Important for applications (cryptography, error correction, condensed matter physics, etc)

Previously known constructions required a large amount of randomness. First step towards *derandomization*: sparse matrices with ± 1 entries as Kraus operators. Other direction: unitary Kraus operators sampled according to a 'simple' measure that 'resembles' the uniform one, e.g. an approximate *t*-design (work in progress).

• What about identifying the full spectral distribution of random quantum channels?

Known: for a random Kraus rank *d* quantum channel $\Phi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$, the eigenvalues of $\Phi - \prod_{\rho_*}$ are typically inside a disc of radius C/\sqrt{d} for large *n*. But what is the exact radius and are they uniformly distributed inside this disc? Answer in the self-adjoint case: asymptotically (as $n, d \to \infty$) the spectrum of $\sqrt{d}(\Phi - \prod_{\rho_*})$ follows a semi-circular distribution (Lancien/Oliveira Santos/Youssef).

- Do the results about the typical spectral gap of random quantum channels remain true when we impose *extra symmetries* on the model?
- What about looking at other, related, notions of expansions, such as geometric ones (Bannink/Briët/Labib/Maassen) or linear-algebraic ones (Li/Qiao/Wigderson/Wigderson/Zhang)?

References

- T. Bannink, J. Briët, F. Labib, H. Maassen. Quasirandom quantum channels. 2020.
- J. Friedman. A proof of Alon's second eigenvalue conjecture. 2008.
- A. Bandeira, M. Boedihardjo, R. van Handel. Matrix concentration inequalities and free probability. 2021.
- C. Bordenave. A new proof of Friedman's second eigenvalue theorem and its extension to random lifts. 2020.
- T. Brailovskaya, R. van Handel. Universality and sharp matrix concentration inequalities. 2022.
- C. González-Guillén, M. Junge, I. Nechita. On the spectral gap of random quantum channels. 2018.
- M.B. Hastings. Solving gapped Hamiltonians locally. 2006.
- M.B. Hastings. Random unitaries give quantum expanders. 2007.
- C. Lancien, P. Oliveira Santos, P. Youssef. Limiting spectral distribution of random self-adjoint quantum channels. 2024.
- C. Lancien, D. Pérez-García. Correlation length in random MPS and PEPS. 2021.
- C. Lancien, P. Youssef. A note on quantum expanders. 2023.
- Z. Landau, U. Vazirani, T. Vidick. A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians. 2015.
- Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson, C. Zhang. On linear-algebraic notions of expansion. 2022.
- G. Pisier. Quantum expanders and geometry of operator spaces. 2014.

Advertisement :)

September 30th to October 18th, 2024

Organisers:

Benoit Collins (Kyoto University) Stéphane Dartois (Université Paris-Saclay, CEA List) Cécilia Lancien (Université Grenoble Alpes, CNRS) Luca Lionni (CNRS, ENS de Lyon)

Random tensors and related topics

Thematic programme with short courses and seminars

