Efficient quantum circuits protocols for port-based teleportation via mixed Schur–Weyl duality arXiv: 2312.03188, 2310.02252

Adam Burchardt

Māris Ozols

29 February 2024

Outline

1. Port-based teleportation

- 2. Overview of mixed Schur-Weyl duality
- 3. Gelfand-Tsetlin basis for partially transposed permutations
- 4. Mixed quantum Schur transform
- 5. Efficient quantum circuits for port-based teleportation

Credits

- Rene Allerstorfer
- Harry Buhrman
- Yanlin Chen
- Tudor Giurgica-Tiron
- Aram Harrow
- Hari Krovi
- Quynh Nguyen
- Florian Speelman
- Philip Verduyn Lunel
- John van de Wetering
- Adam Wills

Port-based teleportation

Port-based teleportation

- Introduced by Ishizaka and Hiroshima in 2008
- Bob does not need to apply a correction operation
- An example of approximate universal quantum processor
- Prior work:
 - Ishizaka, Hiroshima '08, '09
 - Beigi, König '11
 - Mozrzymas, Studziński, Strelchuk, Horodecki '17, '18
 - Christandl, Leditzky, Majenz, Smith, Speelman, Walter '18
 - Leditzky '20

Entanglement fidelity and success probability

► Terminology:

- Ψ is a resource state
- n ports
- *d* is the *local dimension*

$$\mathcal{N}_{\bar{A}\to\bar{B}}(\rho) := \sum_{k=1}^{n} \operatorname{Tr}_{A^{n}\bar{A}B'_{k}} \Big[\Big((\sqrt{E_{k}})_{A^{n}\bar{A}} \otimes I_{B^{n}} \Big) (\Psi_{A^{n}B^{n}} \otimes \rho_{\bar{A}}) \Big(\sqrt{E_{k}}_{A^{n}\bar{A}} \otimes I_{B^{n}} \Big) \Big],$$
$$F := \operatorname{Tr} \Big[\Phi^{+}_{\bar{B}R} (\mathcal{N}_{\bar{A}\to\bar{B}} \otimes I_{R}) \big[\Phi^{+}_{\bar{A}R} \big] \Big],$$
$$p_{\operatorname{succ}} := \operatorname{Tr} \big[\mathcal{N}_{\bar{A}\to\bar{B}} (I/d) \big]$$

Deterministic and Probabilistic PBT

Resource state	Protocol type		
	Deterministic inexact (dPBT)	Probabilistic exact (pPBT)	
EPR	$F = 1 - O(1/n)$ $p_{\text{succ}} = 1$	$F/p_{\text{succ}} = 1$ $p_{\text{succ}} = 1 - O(1/\sqrt{n})$	
Optimized	$F = 1 - O(1/n^2)$ $p_{\text{succ}} = 1$	$F/p_{ m succ} = 1$ $p_{ m succ} = 1 - O(1/n)$	

- Optimal measurements are known. Pretty good measurement E (yellow) is the main ingredient.
- However, there were no known efficient implementations of these measurements prior to our work.
- Two ingredients are needed for a proper understanding:
 - Mixed Schur–Weyl duality
 - Representation theory of partially transposed permutation matrix algebras

Overview of mixed Schur-Weyl duality

Schur-Weyl duality

$$\blacktriangleright \ \mathcal{U}_n^d := \operatorname{span}_{\mathbb{C}} \{ u^{\otimes n} : u \in \operatorname{U}_d \}$$

▶ $\mathcal{A}_n^d := \psi(\mathbb{C}S_n)$, where $\mathbb{C}S_n$ is the group algebra of S_n and $\forall \sigma \in S_n$:

$$\psi(\sigma)(|i_1\rangle\otimes\cdots\otimes|i_n\rangle):=|i_{\sigma^{-1}(1)}\rangle\otimes\cdots\otimes|i_{\sigma^{-1}(n)}\rangle.$$

▶ $\psi : \mathbb{CS}_n \to \operatorname{End}((\mathbb{C}^d)^{\otimes n})$ is the *tensor representation* of \mathbb{CS}_n ▶ $\mathcal{C}(\mathcal{A}, V) := \{B \in \operatorname{End}(V) : [A, B] = 0 \text{ for every } A \in \mathcal{A}\}$

Theorem (Schur-Weyl duality)

• \mathcal{U}_n^d is the centraliser algebra of \mathcal{A}_n^d in $\operatorname{End}((\mathbb{C}^d)^{\otimes n})$ and vice versa:

$$\mathcal{U}_n^d = \mathcal{C}(\mathcal{A}_n^d, (\mathbb{C}^d)^{\otimes n}), \qquad \qquad \mathcal{A}_n^d = \mathcal{C}(\mathcal{U}_n^d, (\mathbb{C}^d)^{\otimes n}).$$

Moreover, when $d \ge n$ the representation ψ is faithful, i.e., $\mathcal{A}_n^d \cong \mathbb{C}S_n$.

▶ \exists a Schur transform U_{Sch} such that for every $\sigma \in \mathbb{C}S_n$ and $u \in U_d$:

$$U_{\rm Sch}\,\phi(u)\,U_{\rm Sch}^{\dagger} = \bigoplus_{\lambda \in \widehat{\mathcal{A}}_n^d} I_{\lambda} \otimes \phi_{\lambda}(u), \qquad \qquad U_{\rm Sch}\,\psi(\sigma)\,U_{\rm Sch}^{\dagger} = \bigoplus_{\lambda \in \widehat{\mathcal{A}}_n^d} \psi_{\lambda}(\sigma) \otimes I_{\lambda}$$

where $\widehat{\mathcal{A}}_n^d$ is the set of irreducible representations of \mathcal{A}_n^d .

Young diagrams. Notation

• $\lambda = (\lambda_1, \dots, \lambda_k)$ is a partition of n, written as $\lambda \vdash n$, if $\lambda_1 \ge \dots \ge \lambda_k \ge 0$ and $\sum_{i=1}^k \lambda_i = n$. • λ is represented by a Young diagram. For example, $\lambda = (3, 2, 0)$ is

The set of irreducible representations (irreps) of \mathbb{CS}_n is indexed by Young diagrams:

$$\widehat{\mathbb{CS}}_n = \{\lambda \vdash n\}$$

▶ The set of irreps of $\mathcal{A}_n^d = \psi(\mathbb{C}S_n)$ is indexed by Young diagrams with bounded length:

$$\widehat{\mathcal{A}}_n^d = \{ \lambda \vdash n \mid \ell(\lambda) \leqslant d \}$$

- We write $\lambda \vdash_d n$ to indicate that $\ell(\lambda) \leq d$.
- Set $AC(\lambda)$ of addable cells a of λ : $\lambda \cup a$ is a valid partition.
- $\operatorname{AC}_d(\lambda) := \{a \in \operatorname{AC}(\lambda) \mid \ell(\lambda \cup a) \leq d\}$

Partially transposed permutations

▶ Multiplication in $\mathcal{B}_{n,m}^d$:

- Tensor representation $\psi : \mathcal{B}^d_{n,m} \to \operatorname{End}((\mathbb{C}^d)^{\otimes n+m})$
- Transposition and contraction (d = 2):

$$\psi\left(\swarrow\right) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \psi\left(\bigcup_{i=1}^{i=1}\right) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

General diagram:

$$\langle y_1 \dots y_5 | \psi \left(\left| \begin{array}{c} \swarrow \\ \ddots \\ \end{array} \right) | x_1 \dots x_5 \rangle =$$

$$= \bigvee_{x_1}^{y_1} \bigvee_{x_2}^{y_2} \bigvee_{y_3}^{y_4} \bigvee_{y_5}^{y_4}$$

$$=\delta_{x_1y_1}\delta_{x_2x_4}\delta_{x_3y_2}\delta_{x_5y_4}\delta_{y_3y_5}$$

Matrix algebra of partially transposed permutations:

$$\mathcal{A}^d_{n,m} := \psi(\mathcal{B}^d_{n,m})$$

• $\mathcal{A}_{n,m}^d$ is generated by transpositions $\sigma_i = (i, i+1), i \neq n$ and the contraction σ_n .

Mixed Schur-Weyl duality

▶ Consider the map $\phi(u) := u^{\otimes n} \otimes \bar{u}^{\otimes m}$ for every $u \in U_d$

Theorem (Koike 1989, Benkart et al. 1994)

 \exists a mixed Schur transform $U_{Sch} \equiv U_{Sch}(n,m)$ such that for every $\sigma \in \mathcal{B}^d_{n,m}$ and $u \in U_d$:

$$U_{\rm Sch}\,\phi(u)\,U_{\rm Sch}^{\dagger} = \bigoplus_{\lambda\in\widehat{\mathcal{A}}_{n,m}^{d}} I_{\lambda}\otimes\phi_{\lambda}(u), \qquad \qquad U_{\rm Sch}\,\psi(\sigma)\,U_{\rm Sch}^{\dagger} = \bigoplus_{\lambda\in\widehat{\mathcal{A}}_{n,m}^{d}}\psi_{\lambda}(\sigma)\otimes I_{\lambda}$$

where $\widehat{\mathcal{A}}_{n,m}^d$ is the set of irreducible representations of $\mathcal{A}_{n,m}^d$. When $d \ge n+m$ the representation ψ is faithful, i.e., $\mathcal{A}_{n,m}^d \cong \mathcal{B}_{n,m}^d$.

▶ The irreps of $\mathcal{A}_{n,m}^d$ are labelled by pairs of Young diagrams (λ_l, λ_r) . More formally:

$$\widehat{\mathcal{A}}^{d}_{n,m} := \Big\{ \lambda = (\lambda_{l}, \lambda_{r}) : 0 \leqslant k \leqslant \min(n, m), \ \lambda_{l} \vdash n - k, \ \lambda_{r} \vdash m - k, \ \ell(\lambda_{l}) + \ell(\lambda_{r}) \leqslant d \Big\}.$$

• A pair $\lambda = (\lambda_l, \lambda_r)$ can be thought of as a *staircase* $\lambda = (\lambda_1, \dots, \lambda_d)$:

- We recover original Schur-Weyl duality when n = 0 or m = 0.
- What are $U_{\rm Sch}(n,m)$ and $\psi_{\lambda}(\sigma)$?

Dmitry Grinko

Gelfand–Tsetlin basis for partially transposed permutations

Gelfand–Tsetlin basis

Definition

A family $(A_0, \ldots, A_n = A)$ of finite-dimensional semisimple algebras over \mathbb{C} is *multiplicity-free* if: (a) $A_0 \cong \mathbb{C}$.

- (b) For each k, there is a unity-preserving algebra embedding $\mathcal{A}_k \hookrightarrow \mathcal{A}_{k+1}$.
- (c) The restriction of an A_k irrep to A_{k-1} is isomorphic to a direct sum of different A_{k-1} irreps.
 - Repeated restriction produces a canonical *Gelfand–Tsetlin* basis of each A_n irrep V_{λ} :

$$\operatorname{Res}_{\mathcal{A}_0}^{\mathcal{A}_1} \dots \operatorname{Res}_{\mathcal{A}_{n-1}}^{\mathcal{A}_n} V_{\lambda} = \bigoplus_{T \in \operatorname{Paths}(\lambda, \mathscr{B})} V_T,$$

▶ This basis is labeled by paths $T = (T^0, T^1, ..., T^n)$ in the *Bratteli diagram* \mathscr{B} .

For $\mathbb{C}S_n$:

- the Gelfand–Tsetlin basis is the Young–Yamanouchi basis,
- the Bratteli diagram is the Young graph.

Example: Bratteli diagram for $\mathbb{C}S_n$ a.k.a. Young graph

$$\mathbb{CS}_0 \hookrightarrow \mathbb{CS}_1 \hookrightarrow \mathbb{CS}_2 \hookrightarrow \mathbb{CS}_3 \hookrightarrow \mathbb{CS}_4$$

▶ Path \cong standard Young tableau \cong Yamanouchi word. For example,

$$T = \left(\varnothing, \Box, \Box, \Box, \Box, \Box\right) = \boxed{\frac{1}{2}} = (1, 2, 1, 2)$$

 $\blacktriangleright d_{\lambda} := |\text{Paths}(\lambda)|.$

Example: Gelfand–Tsetlin basis for $\mathbb{C}S_n$ a.k.a. Young-Yamanouchi basis

The *content* of cell
$$u = (i, j)$$
 is $cont(u) := j - i$.

- Content of i in standard Young tableau T is defined as $\operatorname{cont}_i(T) := \operatorname{cont}(T^i \setminus T^{i-1})$.
- The axial distance between i and i + 1 in T is $r_i(T) := \operatorname{cont}_{i+1}(T) \operatorname{cont}_i(T)$.

Theorem (Young 1931, Yamanouchi 1936)

Given a generator σ_i of $\mathbb{C}S_n$, i = 1, ..., n - 1, the matrix $\psi_{\lambda}(\sigma_i)$ acts on the Gelfand–Tsetlin basis vectors $|T\rangle$, $T \in \text{Paths}(\lambda, \mathscr{B})$ of an irrep $\lambda \in \widehat{\mathbb{C}S}_n$ as follows:

$$\psi_{\lambda}(\sigma_i) |T\rangle = rac{1}{r_i(T)} |T\rangle + \sqrt{1 - rac{1}{r_i(T)^2}} |\sigma_i T\rangle,$$

Example: Bratteli diagram for $\mathcal{A}_{3,2}^3$

Gelfand-Tsetlin basis for partially transposed permutations

Theorem (G., Burchardt, Ozols)

Given a generator σ_i of $\mathcal{A}_{n,m}^d$, i = 1, ..., n + m - 1, the matrix $\psi_{\lambda}(\sigma_i)$ acts on the Gelfand–Tsetlin basis vectors $|T\rangle$ with $T \in \text{Paths}(\lambda)$ of an irrep $\lambda \in \widehat{\mathcal{A}}_{n,m}^d$ as follows:

$$\begin{split} \psi_{\lambda}(\sigma_{i}) & |T\rangle = \frac{1}{\tilde{r}_{i}(T)} & |T\rangle + \sqrt{1 - \frac{1}{\tilde{r}_{i}(T)^{2}}} & |\sigma_{i}T\rangle, & \text{for } i \neq n, \\ \psi_{\lambda}(\sigma_{n}) & |T\rangle = c(T) & |v_{T}\rangle, & |v_{T}\rangle \coloneqq \sum_{T' \in \mathcal{M}(T)} c(T') & |T'\rangle, & c(T) = \sqrt{\frac{m_{T^{n}}}{m_{T^{n-1}}}}, \end{split}$$

where m_{T^n} is the dimension of unitary irrep T^n .

• We recover Young-Yamanouchi basis when n = 0 or m = 0.

Example: $\mathcal{A}^3_{3,2}$

	σ_1	σ_2	σ_3	σ_4
$(\Box\Box\Box,\Box\Box)$	(1)	(1)	(0)	(1)
$\left(\Box\Box\Box, \Box\right)$	(1)	(1)	(0)	(-1)
(□□,□)	$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} & 0 & 0 \\ \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} $	$\left(\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{5} & \frac{2\sqrt{6}}{5} \\ 0 & 0 & 0 & 0 & \frac{2\sqrt{6}}{5} & -\frac{1}{5} \end{pmatrix}$
(\Box, \varnothing)	$ \begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} & 0 \\ 0 & \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} \frac{1}{3} & \frac{2\sqrt{2}}{3} & 0 & 0 & 0 & 0 \\ \frac{2\sqrt{2}}{3} & \frac{8}{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$	$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$
$\left([], \Box] \right)$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
(⊟,□)	$ \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{3} & \frac{2\sqrt{2}}{3} & 0 & 0 & 0 \\ \frac{2\sqrt{2}}{3} & \frac{3}{8} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{\sqrt{15}}{4} & 0 & 0 \\ 0 & \frac{\sqrt{15}}{4} & -\frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{4} & \frac{\sqrt{15}}{4} \\ 0 & 0 & 0 & \frac{\sqrt{15}}{4} & -\frac{1}{4} \end{pmatrix}$

Mixed quantum Schur transform

Our result

Theorem (G., Burchardt, Ozols '23; Nguyen '23)

The mixed quantum Schur transform has a quantum circuit with $\tilde{O}((n+m)d^4)$ gate and depth complexities, where d is the local dimension, and n and m are the parameters of $\mathcal{A}_{n,m}^d$. Two different encodings of the Gelfand–Tsetlin basis lead to the following space complexities:

- standard encoding: $\widetilde{O}((n+m+d)d\log(n+m))$,
- Yamanouchi encoding: $\widetilde{O}(d^2 \log(n+m))$.

Based on the original Schur transform from [Bacon, Chuang, Harrow 2005] by using dual Clebsch–Gordan transforms.

Mixed quantum Schur transform circuit

Recursion in n+m

Clebsch–Gordan transforms

 CG_d^{\pm}

Recursion in d

Efficient quantum circuits for port-based teleportation

Theorem (G., Burchardt, Ozols '23)

The measurements for dPBT and pPBT protocols have gate complexities $\tilde{O}(n^2d^4)$ and the following time and space complexities:

- 1. standard encoding: $\widetilde{O}(nd^4)$ time and $\widetilde{O}((n+d)d\log(n))$ space,
- 2. Yamanouchi encoding: $\widetilde{O}(n^2d^4)$ time and $\widetilde{O}(d^2\log(n))$ space.
- Independent work [Jiani Fei, Sydney Timmerman and Patrick Hayden 2023] describes a different approach to implementation of deterministic PBT via block encoding techniques
- Independent work [Adam Wills, Min-Hsiu Hsieh and Sergii Strelchuk 2023] describes qubit PBT constructions via block encoding techniques

Port-based teleportation

Resource state	Protocol type		
	Deterministic inexact (dPBT)	Probabilistic exact (pPBT)	
EPR	$F = 1 - O(1/n)$ $p_{\text{succ}} = 1$	$F/p_{ m succ} = 1$ $p_{ m succ} = 1 - O(1/\sqrt{n})$	
Optimized	$F = 1 - O(1/n^2)$ $p_{ m succ} = 1$	$F/p_{ m succ}=1$ $p_{ m succ}=1-O(1/n)$	

▶ Pretty good measurement $E = \{E_i\}_{i=0}^n$ (yellow) is given for every $k \in [n]$:

$$E_k := \rho^{-1/2} \rho_k \rho^{-1/2}, \quad \rho_k := \pi^k \sigma_n \pi^{-k}, \quad \rho := \sum_{k=1}^n \rho_k, \quad E_0 := I - \sum_{k=1}^n E_k,$$

where $\pi \in \mathcal{A}_{n,1}^d$ is the cyclic shift on first n systems and $\sigma_n \in \mathcal{A}_{n,1}^d$ is the contraction generator. \blacktriangleright We can rewrite E in the Gelfand–Tsetlin basis and construct a Naimark dilation explicitly.

Naimark dilation

▶ The effect E_n in the Gelfand–Tsetlin basis of every irrep $(\lambda, \emptyset) \in \widehat{\mathcal{A}}_{n,1}^d$ for $\lambda \vdash_d n - 1$ is

$$\psi_{(\lambda,\varnothing)}(E_n) = \sum_{S \in \operatorname{Paths}_{n-1}(\lambda,\mathscr{B})} |w_{S,\lambda}\rangle \langle w_{S,\lambda}|$$
$$|w_{S,\lambda}\rangle \coloneqq \sum_{a \in \operatorname{AC}_d(\lambda)} \sqrt{\frac{d_{\lambda \cup a}}{n \cdot d_\lambda}} |S \circ (\lambda \cup a) \circ (\lambda, \varnothing)\rangle$$
$$|||w_{S,\lambda}\rangle||^2 = \sum_{a \in \operatorname{AC}_d(\lambda)} \frac{d_{\lambda \cup a}}{n \cdot d_\lambda}$$

▶ Key fact: for every $\lambda \vdash n-1$ in the Young lattice the following relation holds:

$$n \cdot d_{\lambda} = \sum_{a \in \mathrm{AC}(\lambda)} d_{\lambda \cup a}$$

► Therefore:

$$\left\| \left\| w_{S,\lambda} \right\rangle \right\|^2 = \begin{cases} 1 & \text{if } \ell(\lambda) < d \\ 1 - \frac{d_{\lambda \cup (d+1,1)}}{n \cdot d_{\lambda}} & \text{if } \ell(\lambda) = d \end{cases}$$

Naimark dilation

The Bratteli diagram \mathscr{B} and the extended Bratteli diagram $\widetilde{\mathscr{B}}$ associated with the algebra $\mathcal{A}^3_{5,1}$

Implementation of the Naimark dilated PVM

• POVM E is dilated to $\Pi = {\{\Pi_k\}}_{k=0}^n$:

$$\Pi_{k} = U_{k} \Pi_{n} U_{k}^{\dagger} \text{ for every } k \in \{1, \dots, n-1\}$$
$$\Pi_{n} = I \otimes \left(\widetilde{W} |0\rangle \langle 0| \widetilde{W}^{\dagger}\right)$$

• U_k and \widetilde{W} are easy-to-implement unitaries. In fact, $U_k = \pi^k$.

• Implementation of $V := \sum_{k=0}^{n} \omega_{n+1}^{k} \Pi_{k}$ is easy:

Implementation of V^i is trivial. Now run the phase estimation circuit:

PGM circuit (standard encoding)

pPBT POVM circuit (standard encoding)

Yamanouchi encoding

Thanks for your attention!