
1 Exercise

1) Information erasure: Consider a system in a state ρ to be converted to some fixed pure
state |ψ⟩, by introducing an external system B involving N qubits, |0⟩ ⟨0|⊗N , and applying
to the composite system a unital channel. During this process, B is simultaneously converted
from a pure state |0⟩ to a maximally mixed flat state (1/2)⊗N . Find the relation between
the entropy of Ω = ρ ⊗ |0⟩ ⟨0|⊗N and the one of Υ = |ψ⟩ ⟨ψ| ⊗ (1/2)⊗N . Can you derive an
upper bound on S(ρ)?

2) Different geometries: Use conformal maps to find the entanglement entropy of a
subsystem of length ℓ within a finite system of length L with periodic boundary conditions,
in its ground state. You can repeat a similar analysis for a semi-infinite line, [0,∞), and the
subsystem A is the finite interval [0, ℓ). What is the coefficient in front of the logarithm with
respect to the one with periodic boundary conditions? Is there an interpretation?

3)Charged moments: We want to compute the charged moments Zn(α) = Tr(ρnAe
iαQA),

where QA is the charge restricted to the subsystem A = [u, v] on an infinite line. You can
think of Zn(α) as the partition function on a Riemann surface in the presence of a charge
flux that you can put in only one sheet (e.g. the first one). You can introduce a composite
twist field Tn,α = TnVα, where Vα is a primary operator generating the magnetic flux, with
dimension hα. Following the same steps we used for the standard twist field, find the scaling
dimension of Tn,α and prove that Zn(α) = cn,α|v − u|−

c
6
(n−1/n)− 2

n
(hα+h̄α).

4) Local quench: Suppose we physically cut a system at the boundaries between two
subsystems A and B. In this state the two subsystems are unentangled. Let us join up the
pieces at time −t. What is the physical cut in the density matrix and how does it change
with respect to the one of the global quantum quench? What is the entanglement entropy
between the two parts in which the system was divided before the quench? The two half-
chains are joined together at the point z1 = (0, iτ) and you can use the one-point function of
the twist field in the upper-half-plane plane. What is the asymptotic expression for t ≫ ϵ?
Are there any free dynamical parameters in the result you find? The z-plane with two slits
can be mapped into the half-plane Re[w] > 0 by w = z/ϵ +

√
(z/ϵ)2 + 1, where ϵ is a cutoff

similar to τ0. For the last question, remember that SA(t = 0) = 0.

5) Negativity with boundaries: Consider two adjacent intervals, the first one starting
from the boundary, i.e. A1 = [0, ℓ1] and A2 = [ℓ1, ℓ1 + ℓ2] where B = [ℓ1 + ℓ2,∞) is the
remainder. For simplicity, place the spatial coordinate along the imaginary direction in the
complex plane, while the imaginary time is on the real direction. By images method, what
is the expression of Tr(ρT2

A )n. Can you draw some general conclusion for ℓ1 = ℓ2?

6) Entanglement Hamiltonian: For simple one dimensional geometries, the entangle-
ment Hamiltonian (i.e. the logarithm of the reduced density matrix) may be written explicitly
in a local form using the physical energy density T00

HA =

∫
A
dxβ(x)T00(x)

This form of the entanglement Hamiltonian implies that ρA represents an ensemble with
the physical energy density T00 in local thermal equilibrium with local temperature β(x).
Its entanglement entropy is therefore just the thermal entropy, obtained by integrating the
thermal entropy density over the region A. If A = x > 0 is the half-line, β(x) = 2πx. By using
a proper conformal mapping, compute the entanglement for one single interval A = [u, v].
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7) Entanglement in higher dimensions: Consider a free massive scalar theory in d
Euclidean dimensions for a free massive scalar field

S =

∫
ddx[∂µφ(x)∂

µφ(x) +m2φ(x)φ(x)].

We denote the space coordinates by xi, i = 1, · · · , d−1, and the Euclidean time by x0. Let A
and Ā be regions with x1 > 0 and x1 ≤ 0, respectively. The entangling surface Σ is chosen to
be a (d− 2)-dimensional hyperplane at x1 = 0: Σ = {(x0, xi)|x0 = x1 = 0}. Let us introduce
the metric of the spacetime

ds2 = dr2 + r2dτ2 +
d−1∑
i=2

dx2i , (1)

where we have used the polar coordinates for the plane parametrised by (x0, x1). The metric
of the n-fold cover Mn of the original spacetime is (1) with r ≥ 0 and 0 ≤ τ ≤ 2πn. Thus,
Mn = Cn,α × Rd−2, where Cn is the two-dimensional cone parametrized by (r, τ).

The TrρnA on Mn is given by

lnTrρnA = −1

2
ln det(−∇2 +m2) = −1

2
tr ln(−∇2 +m2)

=
1

2

∫ ∞

ϵ2

ds

s
tr
[
e−s(−∇2+m2) − e−s

]
,

(2)

where the parameter ϵ2 ≪ 1 is introduced as a regulator for the UV divergences. Because
of the direct product structure of Mn, the Laplacian decomposes into the sum of those
on Cn and Rd−2: ∇2 = ∇2

Cn + ∇2
Rd−2 . The rotational symmetry of the cone Cn allows the

Fourier decomposition of the real fields by the modes exp(iτa), where a = l
n , with integer l.

Therefore, the eigenfunctions φk,a(r, τ) of the Laplacian are parametrized by (k, a) satisfying

∇2
Cnφk,a(r, τ) = −k2φk,a(r, τ), k ∈ R+,

φk,a(r, τ) =

√
k

2πn
eiτaJ|a|(kr),

(3)

where Ja is the Bessel function of the first kind. The eigenfunctions form an orthonormal
basis on the cone Cn, namely∫

Cn
d2xφk,a(x)φ

∗
k′,a′(x) = δna,na′δ(k − k′).

The orthonormal basis of the eigenfunctions of the Laplacian on Rd−2 is spanned by the plane
waves, φk⊥(y) = exp(ik⊥ · y)/(2π)(d−2)/2, with eigenvalues −k2⊥. Exploiting these two sets
of eigenfunctions, compute the trace of the kernel in Eq. (2). Using Eqs. (2) and the result
above, you can compute lnTrρnA for a massive scalar field. As a consistency check, focus your
attention on d = 2: for a semi-infinite line, you should obtain obtain

lnTrρnA =

(
− 1

24

(
n− 1

n

))
(−Ei(−m2ϵ2)), (4)

where

Ei(x) = −
∫ ∞

−x
dt
e−t

t
. (5)

By expanding around ϵ = 0, prove that

S1 =
1

6
(− ln(mϵ)− γE

2
), (6)

where γE is the Euler-Mascheroni constant.
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