ALPS exercises in Quantum Computing Digital quantum simulation tutorial, I. Schwinger model electric propagator via phase kickback Jesse Stryker

May 16, 2024

In this tutorial, we learn how to effect time evolution for the \hat{E}^2 operator of a link (i.e., circuitize $\exp(-i\phi\hat{E}^2)$) in the Schwinger model without applying phase rotations to the \hat{E} register itself. The electric energy \hat{E}^2 is a rather simple function of \hat{E} , but this method becomes especially handy when one needs to deal with more complicated functions of \hat{E} .

- 1. Consider a single qubit with computational basis states $|n\rangle$ (n = 0, 1). If $Z|0\rangle = |0\rangle$ and $Z|1\rangle = -|1\rangle$, give an expression for the number operator \hat{n} associated with this qubit $(\hat{n} |n\rangle = n |n\rangle)$ in terms of Z.
- 2. Now let $|n\rangle = \bigotimes_{j=0}^{\eta-1} |n_j\rangle = |n_{\eta-1}n_{\eta-2}\cdots n_1n_0\rangle$ be a nonnegative integer expressed in binary using η qubits. $(0 \le n \le 2^{\eta} 1)$. If Z_j is the Z operator corresponding to the j^{th} qubit in the register, write the expression for the number operator \hat{n} of the complete register in terms of the Z_j 's.
- 3. Suppose we want to circuitize \hat{n} as a Hamiltonian, i.e., find a circuit to effect $\hat{V} = \exp(-i\phi\hat{n})$ for some angle ϕ . Using the expression for \hat{n} found in (2), express \hat{V} as a function of the Z_j 's. "Trotterize" this expression by decomposing \hat{V} into a product of simpler exponentials. What kind of gates does your expression suggest for implementing \hat{V} ? Sketch the circuit, including rotation angles. (For single-qubit rotation gates, you can use the spin-1/2 definition for rotations about the z-axis: $R_z(\phi) = \exp(-i\phi Z/2)$.)
- 4. Next, suppose you have access to black-box circuits COPY and MULT(IPLY) (and their inverses) defined by the transformations

Write down a minimal circuit to effect $|n\rangle |0\rangle^{\otimes \gamma} \rightarrow |n^2\rangle \otimes |\text{other output bits}\rangle$. How many auxiliary qubits γ had to be introduced in order to obtain $|n^2\rangle$? And what exactly is stored in the "other output" bits?

5. Using the results from (3), draw or explicitly describe a circuit that will effect

$$|n^2\rangle \to e^{-i\phi n^2} |n^2\rangle$$

6. Put together the results of (4) and (5) to give a complete circuit that will effect

$$|n\rangle |0\rangle^{\otimes \gamma} \to e^{-i\phi n^2} |n\rangle |0\rangle^{\otimes \gamma}.$$

Remember to clean up or "uncompute" any intermediate results generated in step (4).

You should be convinced that steps (1)-(6) above have the same effect as having applied $\exp(-i\phi\hat{n}^2)$ to the $|n\rangle$ register itself. However, we instead used an ancilla register and rotations applied to the ancilla register to ultimately "kick back" the desired phase to $|n\rangle$.

7. Connecting to the lattice Schwinger model, one possibility is to take $\hat{E} \equiv \hat{n} - \Lambda$, where the cutoff Λ is related to the electric register size by $2\Lambda = 2^{\eta}$. Noting that $\hat{E}^2 = \hat{n^2} - 2\Lambda \hat{n} + \Lambda^2$, explain how to simulate the electric propagator $\exp(-i\phi \hat{E}^2)$ by taking advantage of the phase kickback method.