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In this tutorial, we learn how to effect time evolution for the hopping term of a link in the Schwinger
model. We will take the Hamiltonian to be H = xσ−

1 σ
+
2 U +H.c., where 1 and 2 refer to the fermions at the

left and right sides of the link, and U =
∑Emax−1

E=Emin
|E + 1⟩ ⟨E| is the truncated link operator. Note that, in

the computational basis, H can be described as off-diagonal with respect to all three variables. The steps
below will show how to diagonalize H such that its time evolution is “easy” to circuitize.

Shearing approach to the hopping term

1. Consider first the toy Hamiltonian H ′ = xσ−
1 σ

+
2 +H.c. and recall σ+ = |0⟩ ⟨1|, σ− = |1⟩ ⟨0|. Note how

H ′ is off-diagonal with respect to both matter qubits in the computational basis.

• Draw points for the four computational basis states in the n1 × n2 plane, and make from them a
mathematical graph showing what states are mixed by the application of H ′. (An edge joining
points |a⟩ and |b⟩ means that ⟨a|H ′ |b⟩ ≠ 0.)

• Some gates, when applied to the basis states, have a very simple geometric action on the graph.
For example, the single-qubit gates X1 or X2 correspond to reflections as follows:

Come up with a two-qubit gate V ′ which, when applied to the basis states, has the effect of
realigning the edge(s) in the graph of H ′ parallel to the n1 axis. Using V ′, explicitly evaluate
the transformed Hamiltonian, V ′HV ′†. How would you characterize V ′HV ′† and its associated
graph in terms of being diagonal vs. off-diagonal?

2. Now consider another toy Hamiltonian, H ′′ = xσ−
1 U +H.c., which is off-diagonal on one matter qubit

and on the bosonic E register.

• Draw points for the computational basis states in the n1 × E plane, and make from them a
mathematical graph showing what states are mixed by the application of H ′′.

• Let λ+ = U + |Emin⟩ ⟨Emax| and λ− = U† + |Emax⟩ ⟨Emin| denote cyclic incrementers on the
electric field. Use λ− to devise a gate V ′′ that, when applied to all qubits, aligns the graph of H ′′

parallel to the n1 axis. You should find that V ′′ commutes with the gate V ′ found previously.

3. If all was done as expected, you should have found two unitary transformations V ′ and V ′′, which
when applied to the original H, transform it as

V ′′V ′H(V ′′V ′)† = xσ−
1 |1⟩ ⟨1|2 (1− |Emax⟩ ⟨Emax|) + H.c.

= xX1 |1⟩ ⟨1|2 (1− |Emax⟩ ⟨Emax|).

In reality, the choice of V ′ and V ′′ is not unique and your projection operators could vary. Regardless,
V ′′V ′H(V ′′V ′)† should be off-diagonal on the 1-mode qubit alone and fully diagonalized by a Hadamard
gate on the same qubit.

• Separating out the two terms xZ1 |1⟩ ⟨1|2 and −xZ1 |1⟩ ⟨1|2 |Emax⟩ ⟨Emax| of the fully diago-
nalized Hamiltonian (they commute), how would you simulate each one? (What controls are
needed?)
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