
CPPcheck and Coverity Scanners

 SHARMAZANASHVILI Alexander
Georgian Technical University

2022-11-29 PMBC'2022 Workshop https://indico.cern.ch/event/1226012 1

▪ Cppcheck Scan

• Cppcheck is lightweight open source
application which can analyze C++ files
considerably faster than any other static
analysis tools

• This Scanning process consists of 9
consecutive steps

• Based on this scanning process automation
tool was created

• Automation is written on bash, C++,
JavaScript languages.

• all the steps in Automation are done without
user interaction

Cloning ATHENA repository

Scanning ATHENA with Cppcheck

Generating New Defects

Searching defect authors, emails, MR
date wit git command

Jira Tickets: creating json file with all the
new defect information

Creating Jira TIckets

Generating statistical data: Overall
Defects, Fixed Defects, Overal Fixed Def.

Converting all defects into HTML table

Uploading all the HTML tables to Atlas
Cppcheck Webpage

• To execute the automation tool we need to run one bash
file auto.sh. This file runs automation steps such as
generating defects xml file. Converting xml data to html
table, creating Jira tickets for each defect.

• For defect generating we have automate.cpp file

• For XML to HTML data conversion we have convertor.sh
file

• For Jira ticket creation we have check_defects.cpp file.

• With automate.cpp file, we clone or pull ATHENA
repository from Gitlab. Scan it with Cppcheck, generate
new defects with defect filter application which is based
on Nodejs and run git log to get author name, email, MR
date for each detected defect.

Automation of Full ATHENA scan with Cppcheck

Automation of Full ATHENA scan with Cppcheck

• New Defect detection application based on NodeJS
contains 2 files. main.js and compare.js

• With main.js we read cppcheck generated defect file, get
defect Path, Line, defect message and modify it into
MultiMap Data Structure. Output from main.js file is two
JSON file. One newDefects JSON file and one oldDefetcs
JSON file

• With compare.js we read JSON files generated by main.js
and do Map to Map defect comparison. Where Map key
value is File path. If two defect file paths are MATCHED
compare.js starts comparing Map values. Map values are
defect message and defect line. If any on the values are
different compare.js identifies it as new defect.

Automation of Full ATHENA scan with Cppcheck

• before we create JIRA tickets we need to check if new
defects were generated at all. For this we have to check
new defects xml file results.xml.

• For this was created check_defects.cpp file. This file
checks if results.xml exists, contains any data at all else
it’ll run Jiraticketcreator.sh bash file.

• To create JIRA tickets, first we need search for defect
author username to be able to assign tickets
automatically. This is done by ldap.sh bash file. This bash
file contains LDAPsearch command for defect authors.
Output is ldap.txt file. we read ldap.txt file extract author
usernames and pass it as argument to jiradatamaker.cpp

• Jiradatamaker.cpp file creates txt file with json format
which contains all the necessary data for JIRA ticket
creation.

• All is left to run cern-get-sso-cookie for authentication
And post generated JIRA data file with CURL

Automation of Full ATHENA scan with Cppcheck

• For XML to HTML data conversion we have one bash file
convertor.sh. This bash file compiles and runs
convert_xml_to_html.cpp file. This file converts All the
generated defect files in automation tool: new defects,
overall defects, fixed defects and overall fixed defects.

• After the first 8 step of the automation are done, in order
to updoad all the HTML tables into Atlas cppcheck
webpage we need commit and push all the changes into
automation tool Gitlab repository.

• Pushing all the changes into master branch triggers
webhook event, which is uploading everything into atlas
cppcheck webpage

• Gitlab repository: https://gitlab.cern.ch/atlas-
sit/cpp_check

Results of Full ATHENA scan with Cppcheck

1. JIRA TICKETS

Results of Full ATHENA scan with Cppcheck

2. HTML Tables
https://atlas-cppcheck.web.cern.ch/

1. New defects

2. Overall defects

3. Fixed defects

4. Overall Fixed defects

Individual Merge Request scan with Cppcheck

• This is scanning process where we run
Cppcheck on Merge Request’s from ATHENA
Gitlab repository

• This scanning process consists of 5
consecutive steps

• Individual MR scanning process is fully
automated

• It is written on python and bash

• This is automation tool is executed through
one bash file.

Locating MR’s at ATHENA gitlab repository through master
Label

Getting Changed file path with comparison of MR’s branch to
master branch

Scanning MR Changed files with cppcheck and generating
defects

Generating template’s for each detected defect

Posting generated template in Gitlab repository as MR
comment

• To start individual MR scanning process we need to make sure
that we have all the necessary applications and library’s are
installed. for this we need to run ./start.sh setup. this
command will check if the python3 and cppcheck are installed,
if not bash file will install them.

• after setup we can run individual MR scanning process with
./start.sh scan. this will launch python file autoMR.py to start
scanning process.

• At terminal autoMR.py will generate all the MR’s with master
label their id, branch, title and ask us to type MR id

• We can choose any of the MR’s iid listed in terminal and type
it

• Automation will compare MR branch and master branch to
find changed files with:

git diff --diff-filter=ACM --name-only master... -- *.cpp *.cxx *.h’

• Output of this command is passed to cppcheck to scan and
generate defects

• After defects are generated each of them are modified and
written into template’s

• At last this template’s are appended as MR’s comment

Automation of Individual Merge Request scan

This is example of the template

▪ Coverity Scan

• Coverity is much more complex static analysis
application than Cppcheck. In comparison Coverity
is generating much detailed defects then cppcheck

• The main advantage of Coverity is his platform
Coverity Connect. This is Coverity database where
all the defect information are appended

• All defects have unique identifier which were
saved in Coverity database. These identifiers give
us possibility to look after specific defect even if it
is located on different line

• In order to generate Defects from Coverity, we
need to do 4 consecutive steps

Coverity Scan

Coverity Configure

Coverity Build

Coverity analyze

Coverity Commit

• Coverity Configure is the first step of Coverity scan. With this step we are configuring compiler for the
Coverity build. In order to build C++ files at ATHENA repository we need to configure GCC compiler.

• Coverity build is the second step of Coverity scan

• In the past ATHENA build was our biggest Challenge. But THANKS to Atilla we successfully generated Build
Configuration file for Athena Build.

• After Build Configuration file is generated, all is left to run Coverity Build command

$COVBUILD – this is a Coverity command cov-build

--dir $COVDIR – this is a directory where ATHENA build will be saved

Make – this is build command

• Coverity analyze is the Third step of Coverity scan. Here we run Coverity analyze command on build directory
for checking all the possible defects in the source code

Coverity Scan

• Coverity analyze command is:
$COVANALYZE --dir $COVBUILDDIR --strip-path $STRIPPATH --all

• $COVANALYZE – is the Coverity analyze command cov-analyze

• --dir $COVBUILDDIR - is the Coverity Build directory

• --strip-path $STRIPPATH – is better usage of Coverity connect

• --all – means that all the possible checkers are enabled for Coverity analyze command

• For example: --concurrency, --security, --enable-parse-warnings, PARSE_ERROR

• Results from last Coverity scan 26/03/2022

▪ Coverity Build took 8 hours and 50 minutes to finish

▪ Coverity analyze took 3 hours and 30 minutes to finish

▪ Files analyzed: 27 653

▪ Functions analyzed: 359 175

▪ Defects found: 12 495

Coverity Scan

• Last step in Coverity Scanning process is Coverity Commit step

• At this step Coverity reads analysis output and source data stored at analysis directory and writes them to
Coverity Connect database by command:

$COVCOMMIT --url https://atlas-coverity.cern.ch --dir $COVBUILDDIR --stream $STREAM --user $USER --password $PASS

• $COVCOMMIT - is Coverity command cov-commit-defects

• --url https://atlas-coverity.cern.ch - with this Coverity command is connecting to the Coverity Connect database through URL

• --dir $COVBUILDDIR - is directory where Coverity analyze output is located

• --stream $STREAM - is just name of analyze output

• --user $USER and --pass $PASS are just for specifying committer name at Coverity Connect database, password for authenticatiion

Coverity Scan

• Coverity connect webpage is: https://atlas-coverity.cern.ch/

Thanks for your attention!

