Frustrated Dark Matter

Linda Carpenter OSU
LHCDMWG Jan 23
arXiv:2205.06824v2 w T. Murphy and T. M. P. Tait

Next Generation Models

(I) the model should preferably be a theoretically consistent extension of one of the DM simplified models already used by the LHC Collaborations;
(II) the model should still be generic enough to be used in the context of broader, more complete theoretical frameworks;
(III) the model should have a sufficiently varied phenomenology to encourage comparison of different experimental signals and to search for DM in new, unexplored channels;
(IV) the model should be of interest beyond the DM community, to the point that other direct and indirect constraints can be identified.

Frustrated Dark Matter

All mediator fields coupling both to χ and to SM fields carry SM gauge charges that preclude renormalizable gauge-invariant interactions between the dark matter and any SM fermion.

Interactions of the dark matter are frustrated in the sense that the specific mediator assignments preclude its tree level interaction with the SM

Bipartite Mediator Sector

$$
\begin{gathered}
\mathrm{SM} \longleftrightarrow \text { mediators }\left\{\begin{array}{l}
\varphi(\text { scalar }) \\
\psi(\text { Dirac })
\end{array}\right\} \longleftrightarrow \mathrm{DM} \chi: \\
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {med }}+\mathcal{L}_{\chi}, \\
\mathcal{L}_{\text {med }}=\left(D_{\mu} \varphi\right)^{\dagger s}\left(D^{\mu} \varphi\right)_{s}-m_{\varphi}^{2} \varphi^{\dagger s} \varphi_{s}+\bar{\psi}^{s}\left(\mathrm{i} \not D-m_{\psi}\right) \psi_{s}+\mathcal{L}_{\text {decay }} \\
\mathcal{L}_{\chi}=\bar{\chi}\left(\mathrm{i} \not \partial-m_{\chi}\right) \chi+y_{\chi}\left(\varphi^{\dagger s} \bar{\chi} \psi_{s}+\text { H.c. }\right)
\end{gathered}
$$

Sextet Mediators

Field	Description	$\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$ representation	Couples to SM?
χ	Dark matter	$(1,1,0)$	
φ	Scalar mediator	$\left(6,1, \frac{4}{3}\right)$	\checkmark
ψ	Dirac mediator		

$\mathcal{L}_{\text {decay }}=\lambda_{I J} K_{s}{ }^{i j} \varphi^{\dagger s} q_{\mathrm{R} I i}^{\bar{c}} q_{\mathrm{R} J j}+$ H.c. \quad with $\quad q \in\{u, d\}$,

Why Sextets ?

One of few BSM extensions that allows renormalizable couplings of BSM state to quarks (interesting BSM extension just for this reason)

Allows Frustrated DM scenario through renormalizable coupling of scalar messenger only
Less explored and less constrained but perfectly allowed extension of $\mathrm{SU}(3)$

Interesting phenomenological feature of 'SUSY-like' signatures but with heavier fermionic particles

$D^{0}-\bar{D}^{0}$ mixing

$$
\left(\lambda_{11} \lambda_{22}\right)^{2} \leq 9.3 \times 10^{-7}\left(\frac{m_{\varphi}}{\mathrm{TeV}}\right)^{2}
$$

$$
\star \lambda_{22}=0
$$

Choose MFV framework to kill mixing

Scalar Mediators at LHC

$$
\begin{gathered}
g g \rightarrow \varphi^{\dagger} \varphi \\
p p \rightarrow \varphi^{\dagger} \varphi \rightarrow u u \bar{u} \bar{u}(t t \overline{t t})^{\star} \quad p p \rightarrow \varphi \rightarrow u u(t t)^{\star} \\
p p \rightarrow \varphi^{\dagger} \varphi \rightarrow u u \bar{t} \text { ? }
\end{gathered}
$$

Scalar Mediator 4 quark Searches

Scalar Mediator 4 quark Searches

$\varphi^{\dagger} \varphi$ limits: $\sigma(t \bar{t} t \bar{t})$ measurement

Scalar Mediator di-jet searches

Fermionic Mediators at LHC

$\psi \bar{\psi}$ limits: jets $+E_{T}^{\text {miss }}$ searches

Limits computed from ATLAS-CONF-2019-040 CMS-SUS-16-033

SUSY jets + MET channels

More Channels?

1) Large MET

2) $p p \rightarrow \varphi^{\dagger} \varphi \rightarrow u u \overline{t t}$

Dark Matter Loop Interactions

$$
\begin{aligned}
& \supset \\
& + \\
& \mathcal{L}_{\text {eff }}^{\mathrm{R}}=\lambda_{\mathrm{s}} \bar{\chi} \chi B_{\mu \nu} B^{\mu \nu}+\mathrm{i} \lambda_{\mathrm{p}} \bar{\chi} \gamma^{5} \chi B_{\mu \nu} \tilde{B}^{\mu \nu}+\kappa_{\mathrm{s}} \bar{\chi} \chi \operatorname{tr} G_{\mu \nu} G^{\mu \nu}+\mathrm{i} \kappa_{\mathrm{p}} \bar{\chi} \gamma^{5} \chi \operatorname{tr} G_{\mu \nu} \tilde{G}^{\mu \nu} \\
& \mathcal{L}_{\text {eff }}^{\mathrm{T}}=\varrho_{1} \bar{\chi} \mathrm{i} \partial^{\{\mu} \gamma^{\nu\}} \chi \mathcal{G}_{\mu \nu}^{(2)}+\varrho_{2} \bar{\chi} \mathrm{i} \partial^{\mu} \partial^{\nu} \chi \mathcal{G}_{\mu \nu}^{(2)} \\
& \mathcal{G}_{\mu \nu}^{(2)} \equiv \operatorname{tr}\left[G_{\mu}{ }^{\rho} G_{\rho \nu}+\frac{1}{4} \eta_{\mu \nu} G_{\alpha \beta} G^{\alpha \beta}\right],
\end{aligned}
$$

For our model Coefficients are Computed as

$$
\begin{aligned}
\lambda_{\mathrm{s}} & =-\frac{\alpha_{1}}{27 \pi} \frac{y_{\chi}^{2}}{m_{\psi} m_{\varphi}^{2}} \\
\kappa_{\mathrm{s}} & =-\frac{5 \alpha_{3}}{96 \pi} \frac{y_{\chi}^{2}}{m_{\psi} m_{\varphi}^{2}} \\
\lambda_{\mathrm{p}} & =\tilde{\kappa}_{\mathrm{p}}=0 \\
\varrho_{1} & =\frac{5 \alpha_{3}}{48 \pi} y_{\chi}^{2} \frac{1}{m_{\varphi}^{2}\left(m_{\varphi}^{2}-m_{\psi}^{2}\right)^{2}}\left[m_{\varphi}^{2}-m_{\psi}^{2}+m_{\varphi}^{2} \ln \frac{m_{\psi}^{2}}{m_{\varphi}^{2}}\right] \\
\varrho_{2} & =\frac{5 \alpha_{3}}{12 \pi} y_{\chi}^{2} \frac{m_{\psi}}{\left(m_{\varphi}-m_{\psi}\right)^{5}}\left[3\left(m_{\varphi}^{4}-m_{\psi}^{4}\right)+\left(m_{\psi}^{4}+4 m_{\varphi}^{2} m_{\psi}^{2}+m_{\psi}^{4}\right) \ln \frac{m_{\psi}^{2}}{m_{\varphi}^{2}}\right]
\end{aligned}
$$

Loop coupling to photon and quarks

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{Q}}=\iota_{I I}\left[\left(\bar{\chi} \gamma^{\mu} \chi\right)\left(\bar{u}_{I} \gamma_{\mu} u_{I}\right)+\left(\bar{\chi} \gamma^{\mu} \chi\right)\left(\bar{u}_{I} \gamma_{\mu} \gamma^{5} u_{I}\right)\right] \\
\iota_{I I}=\frac{1}{2} \frac{\lambda_{I I}^{2}}{(4 \pi)^{2}} \frac{y_{\chi}^{2}}{m_{\psi} m_{\varphi}}
\end{gathered}
$$

$$
\mathcal{L}_{\text {eff }}^{\mathrm{EM}}=A_{1} \bar{\chi} \gamma^{\mu} \chi \partial^{\nu} B_{\mu \nu}+\frac{1}{4} A_{2} \bar{\chi} \sigma^{\mu \nu} \chi B_{\mu \nu}+A_{3} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \partial^{\nu} B_{\mu \nu}+\frac{1}{4} A_{4} \mathrm{i} \bar{\chi} \sigma^{\mu \nu} \gamma^{5} \chi B_{\mu \nu}
$$

Dark Matter EDM

DM annihilation channels

$$
R_{X}=\frac{\left\langle\sigma v_{\chi}\right\rangle(\chi \bar{\chi} \rightarrow X)}{\left\langle\sigma v_{\chi}\right\rangle} \text { with }\left\langle\sigma v_{\chi}\right\rangle=\sum_{X}\left\langle\sigma v_{\chi}\right\rangle(\chi \bar{\chi} \rightarrow X)
$$

— $u \bar{u} \quad===W^{+} W^{-}$

	m_{χ} range $[\mathrm{GeV}]$	$m_{\varphi}[\mathrm{GeV}]$	$m_{\psi}[\mathrm{GeV}]$	λ_{11}	λ_{33}
BP1	$(0,1600)$		1600		
	BP2	1150	2000	0.125	0.75
	BP3				

Indirect Detection Bounds

Computed with DARKFLUX https://github.com/carpenterphysics/DarkFlux. arXiv:2202.03419v2

New Directions

Explore New Frustrated Models
Explore MFV scenario, is it less constrained?
More Collider signatures, e.g. large MET events
Extend DARKFLUX use

