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• Quantum computing evolves rapidily with new improvements and new applications
published almost every day

• Together with theoretical understanding of their behavior

• Quantum algorithms are not yet ready to replace classical computing on realistic, large 
scale problems

• (NISQ) hardware limitations have an effect on :

• The size of the poblems we can solve

• The complexity of the algorithms we can implement

• The stability of the results

• Impact time scale and size is driven by hardware roadmaps

• Need research on algorithms to evolve in parallel, to accelerate reach of fault-tolerant regime (co-
development)

Not just hype, but …



Quantum algorithms and applications

Quantum effects improve and accelerate 

complex algorithms

• Sampling, searches and optimization

• Linear algebra and machine learning

• Cryptography and communication

Challenges: 

Re-think algorithms design

Fairly design classical benchmarks

Many potential applications in HEP:

• Monte Carlo and Event Generation

• Quantum Simulation

• Pattern Recognition

• QML

Shapoval, Illya, and Paolo Calafiura. 

"Quantum associative memory in 

HEP track pattern recognition." EPJ 

Web of Conferences. Vol. 214. EDP 

Sciences, 2019

Ex.: Exponential data compression with a 

Quantum Associative memory



Quantum 
Computing at CERN



The CERN Quantum 
Technology Initiative 

CERN established the QTI in 2020

T1 - Scientific and 

Technical Development 

and Capacity Building
T2 - Co-development

T3 - Community 

Building

T4 - Integration with 

national and 

international initiatives 

and programmes

• Roadmap in 2021

• Publicly available on Zenodo
https://doi.org/10.5281/zenodo.5553774



• Assess the areas of 

potential quantum 

advantage in HEP (QML, 

classification, anomaly 

detection, tracking)

• Develop common 

libraries of algorithms, 

methods, tools; 

benchmark as technology 

evolves

• Collaborate to the 

development of shared, 

hybrid classic-quantum 

infrastructures

Scientific Objectives

Computing & Algorithms

• Identify and develop 

techniques for quantum 

simulation in collider 

physics, QCD, cosmology 

within and beyond the SM

• Co-develop quantum 

computing and sensing 

approaches by providing 

theoretical foundations 

to the identifications of 

the areas of interest

Simulation & Theory

• Develop and promote 

expertise in quantum 

sensing in low- and high-

energy physics 

applications

• Develop quantum sensing 

approaches with 

emphasis on low-energy 

particle physics 

measurements

• Assess novel 

technologies and 

materials for HEP 

applications

Sensing, Metrology & 

Materials

• Co-develop CERN 

technologies relevant to 

quantum infrastructures

(time synch, frequency 

distribution, lasers)

• Contribute to the 

deployment and 

validation of quantum 

infrastructures

• Assess requirements and 

impact of quantum 

communication on 

computing applications

(security, privacy)
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Quantum Computing Objectives at CERN
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infrastructures

Computing & Algorithms

Set baseline for prioritisation and systematisation

• Quantum Machine Learning

• Relatively loose definition

• Variational approach / Robustness to noise

• Algorithms beyond QML

Formal approach to algorithms, methods, error 

characterisation and correction

Test different hardware

• Semi-conductors, ions, … (IBM, Rigetti, IonQ,…)

• Photonic (Xanadu), Annealer (D-Wave)

• Quantum-inspired (Fujtsu digital, Toshiba SBM) 



Quantum Machine 
Learning



Studying Deep Learning in physics

• High quality labelled training data from realistic MC simulation

• Large experimental datasets

• Interestingly structured data at multiple scales

• Detailed understanding of systematic uncertainties

M. Erdmann, J. Glombitza,G. Kasieczka, U. Klemradt, Deep Learning for physics research

Quantum Machine



High Energy Physics use cases

Multiple applications:

• Simulation

• Anomaly Detection and trigger 

• Binary Classification and data analysis

• Reconstruction: Tracking, Calorimetry and Jets

• Engineering: Reinforcement Learning for beams steering in the accelerator sector

Classical Deep Learning  review:  https://iml-wg.github.io/HEPML-LivingReview/

Different use cases can have different  requirements: 

Fast inference vs Real time training capability vs Fast training for large optimizations



Quantum Advantage for QML

Different advantage definitions

Runtime speedup 

Sample complexity

Representational power

Classical Intractability: a quantum algorithm that cannot be efficiently simulated classically

• No established recipe for classical data

• Need to use the whole exponential advantage in Hilbert space, but will it converge ? 

(Algorithm expressivity vs convergence and generalization) 

12

Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).

Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Abbas, Amira, et al. "The power of quantum neural 

networks." Nature Computational Science 1.6 (2021): 403-409.

QML: Quantum computing to “improve” ML



QML Lifecycle

Data Reduction

Data Encoding [1,2,3]

[1] Robust data encodings for quantum classifiers, Ryan 

LaRose and Brian Coyle, Phys. Rev. A 102, 032420 

[2] Quantum convolutional neural network for classical data 

classification, https://arxiv.org/pdf/2108.00661.pdf

[3] Quantum Support Vector Machines for Continuum 

Suppression in B Meson Decays, 

https://arxiv.org/abs/2103.12257

The advantage of many
known QML algorithms

is impeded by I/O 
bottleneck

Read Out

Trainability (BP…)

Data 
Preparation

Model 
Definition

Model 
TrainingModel Testing

Model 
Interpretation

https://arxiv.org/pdf/2108.00661.pdf
https://arxiv.org/abs/2103.12257


Model definition

Parametric ansatz

Gradient-free or gradient-based optimization

Data Embedding can be learned

Ansatz design can leverage data symmetries1

Variational algorithms

Kernel methods

Feature maps as quantum kernels

Use classical kernel-based training

• Convex losses

• Compute pair-wise distances in Ndata

Identify classes of kernels that relate to specific

data structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant 

quantum kernels for data with group 

structure." arXiv:2105.03406 (2021).

Image credit 

SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz 

group equivariant neural network for 

particle physics." PMLR, 2020.

Representer theorem: implicit models achieve better accuracy3

Explicit models exhibit better generalization performance
Jerbi, Sofiene, et al. "Quantum machine learning beyond 

kernel methods." arXiv preprint arXiv:2110.13162 (2021).



The size of the Hilbert space requires compromises between 
expressivity, convergence and generalization

Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization

• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)

• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

QCNN: A Pesah, et al., Physical 

Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 

Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Kernel values can 
concentrate 
exponentially 
around a common 
value

Need exponentially 
larger number of 
measurements to 
resolve

Kernel trainability and kernel concentration

Study kernel trainability in our AD model (arxiv:2208.11060)



Multiple QML prototypes for different applications

We can build expressive models and we can train them ☺

Increasing level of precision

Robustness against noise ?

Our results so far.. 

Scale is still a problem on current quantum hardware

Complex data pre-processing 

Generalization

Empirical results → Need theoretical grounding
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classic kmeans (auc 0.908)

quantum kmeans (auc 0.877)

QML at CERN

Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural 
networks for particle track reconstruction." Quantum 
Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, 

BQiT 2021, 2022 CERN openlab Tech Workshop

p0=5%

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia 

Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin

Reiter. Higgs analysis with quantum classifiers. EPJ Web of 

Conferences, 251:03070, 2021

Borras, Kerstin, et al. "Impact of quantum noise on the 

training of quantum Generative Adversarial 

Networks." arXiv preprint arXiv:2203.01007 (2022).

Chang S.Y. et al., Running the Dual-PQC 

GAN on Noisy Simulators and Real 

Quantum Hardware, QTML2021, ACAT21

O. Kiss, Quantum Born Machine for 

event generation, ACAT2021

Kinga Wozniak, Unsupervised clsutering for a 

Randall–Sundrum Graviton at 3.5TeV narrow 

resonance, 5th IML workshop, May 2022

Bravo-Prieto, Carlos, et al. "Style-based 

quantum generative adversarial networks 

for Monte Carlo events." arXiv preprint 

arXiv:2110.06933 (2021).



Anomaly Detection



So far only negative results in direct (model dependent) searches 

New Physics at the LHC

How to insure we 
do not miss 
potential 
discoveries? 



A typical hybrid QML workflow

Anomaly detection can point to 

new physics at the LHC

Model-agnostic! 

Use a hybrid quantum-classical workflow

Data 

compression
Quantum 

algorithm

«Normal» 

training data
Output

V. Belis et al., Quantum anomaly detection in the latent space of proton
collision events at the LHC, arxiv:2301.10780



Simulate QCD multijet production at 
the LHC (64 fb -1)

Standard Model jet data

Event selection: 
• Two jets with pT > 200 GeV and |η| < 2.4
• mjj > 1260 GeV (emulate online selection) 
• Each event is represented by its two highest-pT

jets.

Jet is built of 100 highest-pT

particles within ∆R < 0.8 from 
its axis.

Convolutional AutoEncoder compresses

particle jet learning the internal structure

• Trained on background events

ℝ300 → ℝℓ , ℓ = 4, 8,16



Train a kernel machine to find the hyperplane that 
maximizes the distance of the data from the 
origin of the feature vector space

Unsupervised kernel machine
Data Embedding circuit

Is a upper bound on the fraction of anomalies in the training data set at 0.01 (at most

1% QCD training data are falsely flagged) 

“Standard” kernel definition



Results

Quantum kernel machine works best for 
more complex physics

Comparison to best-performing classical algorithm 
with similar complexity trained and tested on the same 
data
• RBF –based SVM

AUC shows marginal advantage for quantum algorithm

Evaluate performance at typical working, where εs = 
0.6, 0.8



Characterizing the advantage Higher is
better

NE0: 1 layer - No entanglement
NE1: no entanglement

Full entanglement

Given signal and background efficiencies, 
εs and εb respectively:

Performance advantage is consistent
• Increase in the expressibility and entanglement 

up to L=4  improve performance, reduce it above
• Full entanglement is not better

Classical is better than 4 qubit QSVM



Reinforcement
learning



Agent interacts with environment

• Follow policy 

• Find policy that maximizes reward

Quantum Reinforcement Learning 

Expected reward is estimated by value function 𝑸(𝒔, 𝒂)

• DQN: Deep Q-learning (NN-based)

• FERL: Free energy-based RL (clamped Quantum Boltzmann Machine)

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement 

learning at CERN beam lines. arXiv:2209.11044

Implement the quantum NN on a set of qubits

Quantum computer calculates the reward as the energy of 

the qubit system

In this framework the agent is classical



Beam optimisation in linear accelerators

• Action: (discrete) deflection angle 

• State: (continuous) BPM position 

• Reward: integrated beam intensity on 

target

• Optimality: fraction of states in which the 

agent takes the right decision

• Quantum RL  massively

outperforms classical Q-

learning (8±2 vs. 320±40 steps 

with e. r.)

Michael Schenk et al., Hybrid actor-critic algorithm for 

quantum reinforcement learning at CERN beam lines, 

e-Print: 2209.11044 [quant-ph]



Convergence and representational power

QRL use cases confirms advantage in 

terms of model size and training steps

Michael Schenk, Elías F. Combarro, Michele Grossi, Verena Kain, Kevin Shing Bruce Li, 

Mircea-Marian Popa, Sofia Vallecorsa, Hybrid actor-critic algorithm for quantum 

reinforcement learning at CERN beam lines. arXiv:2209.11044

Without experience replay



Actor-Critic Q-learning training D-Wave Advantage

CERN AWAKE facility

2GeV electron 

beam line

QA

Successful

evaluation on the real

beam-line

Real

Simulated

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement

learning at CERN beam lines, e-Print: 2209.11044 [quant-ph]



Improving
robustness



Improving robustness

• Correlate expected model performance to data set properties

• Stabilizing training on NISQ 

• Trainability vs expressivity robustness studies

• Evaluating generalisation

• Quantum vs classical data

• Algorithms beyond QML
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NISQ regime affects QML performance. Can we build ensembles?

Ensembles of quantum neural networks

Incudini, M. , et al. "Resource Saving via Ensemble Techniques 

for Quantum Neural Networks." arXiv:2303.11283 (2023).

Bagging: best for high variance; reduces

BPs by keeping the feature space limited

• 10 independently trained instances

• rf :% of samples, rn:% features

Boosting: high bias models (little

sensitivity to subsampling)

• AdaBoost, 10 repetitions

Study regression and classification

tasks in toy and realistic datasets



QNN setup and simulated results
1 layer

Measure the generalisation error on test sample (20 %)

Bagging methods outperform full model and Boosting: shallower networks, fewer input features

Choose relatively simple QNN:

n qubits = n features

Ry single rotation gates

CNOT in linear entanglement

Local observable (σz) 

Concrete (MSE) Diabetes (MSE) Diabetes (CCE)



Bagging brings significant advantage

Reducing resources:

Best performance for low

dimensionality

Robustness against noise:

Linear regression task on IBM QPU 

(ibm_lagos):

Bagging: 80% features, 20% 

samples

QNN: 4 qubit, 1 layer

Linear 
Concrete
Diabetes
Wine

Linear 
Concrete
Diabetes
Wine



Quantum machine learning for quantum data

Huang, et al., Science 376, 6598 (2022) 

Work directly with quantum states.

Task: Drawing phase diagrams

Cong, et al., Nat. Phys. 15, 1273–1278 (2019)

1. Supervised classification using a 

convolutional QNN using the 

groundstates as input data. 

2. Advantageous since quantum states are 

exponentially hard to save 

classically. 

3. Bottleneck: we need access to 

classical training labels!  Interpolation 

does not work



Setting the stage
▪ Train in easy (integrable) subregions 

▪ Generalize to a full model1

• Model: Axial Next Nearest Neighbor 

Ising (ANNNI) Hamiltonian:

Which is integrable for 𝜅 = 0 or ℎ = 0.

Binary Cross-entropy

Variational quantum data 

Monaco, at al.  arXiv: 2208.08748 (2022), accepted PRB 

Monte Carlo,

DMRG

Senk, Physics Reports, 170, 4 (1988)



Results
Learn a similarity function between the data.
Kottman, et al., Phys. Rev. Research 3, 043184 (2021)

1. Out of Distribution 

Generalization? [M..Caro et al., Out-

of-distribution generalization for learning 

quantum dynamics, 

https://arxiv.org/abs/2204.10268]

2. Performance increases with 

the system’s size. 

3. Adresses the bottlneck of 

needing expensive training 

labels. 

4. QCNN gives quantitative 

predictions
[Banchi et all., Generalization in Quantum 

Machine Learning: A Quantum Information 

Standpoint, PRX QUANTUM 2, 040321 (2021) ]

Autoencoder(95%)

https://arxiv.org/abs/2204.10268


The CERN QTI is studying impact of Quantum Technologies  in High Energy 

Physics:

• Some preliminary hints of advantage

• So far..  we can do «as good as classical methods». In many cases, limitations

are hardware-related

• Need more robust studies to estimate performance and drive model 

development

We are now formulating a longer term research plan

Perspective



QML is the right solution

Exclusion Region for QML in HEP?



Thank you!

November 20th-24th, 2023 
@CERN

Sofia.Vallecorsa@cern.ch



Change of quantum state 
caused by the interaction 
with an external system:

• transition between 
superconducting and 
normal-conducting

• transition of an atom from 
one state to another

• change of resonant 
frequency of a system 
(quantized)

Quantum sensing
M. Doser, Physics frontiers, 9/10 Mar 2022



QFT: Focus on computations that are exponentially hard with classical methods.  Ex. Sign 
problems in particle theory

• Dynamical Simulations of Lattice Gauge Theories

• Finite-Density Nuclear Matter

• Challenges related to digitization and truncation of filed representation (on a finite number of quantum 
states) and redundancy in the Hilbert space1

Cross section integration as quantum amplitude estimation3

Event generation with quantum generative models or direct simulation

Parton showering as quantum random walk2

Theory and Simulation

1 D. Grabowska’s presentation at the CERN QTI workshop (https://indico.cern.ch/event/1098355)
2 A quantum walk approach to simulating parton showers Khadeejah Bepari, Sarah Malik, Michael 

Spannowsky, Simon Williams arxiv:2109.13975 and presentation at the CERN QTI workshop 

(https://indico.cern.ch/event/1098355)
3Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." arXiv preprint 

arXiv:2201.01547 (2022)

https://indico.cern.ch/event/1098355
https://indico.cern.ch/event/1098355


Train models using noisy simulator and  test the inference of the model on the  superconducting (IBMQ) and 
trapped-ion (IONQ) quantum hardware

• For IBMQ machines, choose the qubits with the lowest CNOT gate error

qGAN Benchmarks on hardware

Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 

Quantum Hardware, QTML2021, ACAT21


