Quantum Machine Learning in High Energy Physics

Sofia Vallecorsa

AI & Quantum Research - CERN IT

March 27th 2023

Outline

- 1. Introduction
- 2. CERN Quantum Technology Initiative
- 3. Quantum Machine Learning and Applications at CERN
- 4. Anomaly Detection
- 5. Beam Optimisation in linear accelerators
- 6. Improving robustness
 - Stabilizing training on NISQ
 - Quantum data

7. Summary

Not just hype, but ...

- Quantum computing evolves rapidily with new improvements and new applications published almost every day
 - Together with theoretical understanding of their behavior
- Quantum algorithms are not yet ready to replace classical computing on realistic, large scale problems
- (NISQ) hardware limitations have an effect on :
 - The size of the poblems we can solve
 - The complexity of the algorithms we can implement
 - The stability of the results
- Impact time scale and size is driven by hardware roadmaps
 - Need research on algorithms to evolve in parallel, to accelerate reach of fault-tolerant regime (codevelopment)

Quantum algorithms and applications

Quantum effects improve and accelerate complex algorithms

- Sampling, searches and optimization
- Linear algebra and machine learning
- Cryptography and communication

Many potential applications in HEP:

- Monte Carlo and Event Generation
- Quantum Simulation
- Pattern Recognition
- QML

Ex.: Exponential data compression with a Quantum Associative memory

Challenges:

Re-think algorithms design

Fairly design classical benchmarks

Shapoval, Illya, and Paolo Calafiura. "Quantum associative memory in HEP track pattern recognition." *EPJ Web of Conferences*. Vol. 214. EDP Sciences, 2019

Quantum Computing at CERN

The CERN Quantum Technology Initiative

Voir en français

CERN meets quantum technology

The CERN Quantum Technology Initiative will explore the potential of devices harnessing perplexing quantum phenomena such as entanglement to enrich and expand its challenging research programme

30 SEPTEMBER, 2020 | By Matthew Chalmers

The AEgIS 1T antimatter trap stack. CERN's AEgIS experiment is able to explore the multi-particle entangled nature of photons from positronium annihilation, and is one of several examples of existing CERN research with relevance to quantum technologies. (Image: CERN)

INITIATIVE

CERN established the QTI in 2020

- Roadmap in 2021
- Publicly available on Zenodo https://doi.org/10.5281/zenodo.5553774

Scientific Objectives

- Assess the areas of potential quantum advantage in HEP (QML, classification, anomaly detection, tracking)
- Develop common libraries of algorithms, methods, tools; benchmark as technology evolves
- Collaborate to the development of shared, hybrid classic-quantum infrastructures
- Computing & Algorithms

QUANTUM TECHNOLOGY INITIATIVE

- Identify and develop techniques for quantum simulation in collider physics, QCD, cosmology within and beyond the SM
- Co-develop quantum computing and sensing approaches by providing theoretical foundations to the identifications of the areas of interest

- Develop and promote expertise in quantum sensing in low- and highenergy physics applications
- Develop quantum sensing approaches with emphasis on low-energy particle physics measurements
- Assess novel technologies and materials for HEP applications

Sensing, Metrology & Materials

- Co-develop CERN technologies relevant to quantum infrastructures (time synch, frequency distribution, lasers)
- Contribute to the deployment and validation of quantum infrastructures
- Assess requirements and impact of quantum communication on computing applications (security, privacy)

Communications & Networks

Simulation & Theory

Quantum Computing Objectives at CERN

- Assess the areas of potential quantum advantage in HEP (QML, classification, anomaly detection, tracking)
- Develop common libraries of algorithms, methods, tools; benchmark as technology evolves
- Collaborate to the development of shared, hybrid classic-quantum infrastructures

Computing & Algorithms

DUANTUM

Set baseline for **prioritisation** and **systematisation**

- Quantum Machine Learning
 - Relatively loose definition
 - Variational approach / Robustness to noise
 - Algorithms beyond QML

Formal approach to algorithms, methods, error characterisation and correction

Test different hardware

- Semi-conductors, ions, ... (IBM, Rigetti, IonQ,...)
- Photonic (Xanadu), Annealer (D-Wave)
- Quantum-inspired (Fujtsu digital, Toshiba SBM)

Quantum Machine Learning

Studying Deep Learning in physics

Quantum Machine

- High quality labelled training data from realistic MC simulation
- Large experimental datasets
- Interestingly structured data at multiple scales
- Detailed understanding of systematic uncertainties

High Energy Physics use cases

Multiple applications:

- Simulation
- Anomaly Detection and trigger
- Binary Classification and data analysis
- Reconstruction: Tracking, Calorimetry and Jets
- Engineering: Reinforcement Learning for beams steering in the accelerator sector

Different use cases can have different requirements:

Fast inference vs Real time training capability vs Fast training for large optimizations

Classical Deep Learning review: https://iml-wg.github.io/HEPML-LivingReview/

Quantum Advantage for QML

QML: Quantum computing to "improve" ML

Different advantage definitions

Runtime speedup

Sample complexity

Representational power

Classical Intractability: a quantum algorithm that cannot be efficiently simulated classically

- No established recipe for classical data
- Need to use the whole exponential advantage in Hilbert space, but will it converge ?

(Algorithm expressivity vs convergence and generalization)

Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021). Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

QML Lifecycle

The advantage of many known QML algorithms is impeded by I/O bottleneck

Trainability (BP...)

 Robust data encodings for quantum classifiers, Ryan LaRose and Brian Coyle, Phys. Rev. A 102, 032420
 Quantum convolutional neural network for classical data classification, <u>https://arxiv.org/pdf/2108.00661.pdf</u>
 Quantum Support Vector Machines for Continuum Suppression in B Meson Decays, <u>https://arxiv.org/abs/2103.12257</u>

Model definition

Variational algorithms

Parametric ansatz

Gradient-free or gradient-based optimization Data Embedding can be learned Ansatz design can leverage data symmetries¹

Kernel methods

Feature maps as quantum kernels

Use classical kernel-based training

- Convex losses
- Compute pair-wise distances in N_{data}

Identify classes of kernels that relate to specific data **structures**²

Representer theorem: implicit models achieve better accuracy³

Explicit models exhibit better generalization performance

 Jerbi, Sofiene, et al. "**Quantum machine learning beyond kernel methods**." *arXiv preprint arXiv:2110.13162* (2021).

Model Convergence and Barren Plateau

The size of the Hilbert space requires compromises between expressivity, convergence and generalization

Classical gradients vanish exponentially with the number of layers (J. McClean *et al.*, arXiv:1803.11173)

• Convergence still possible if gradients consistent between batches.

Quantum gradient decay exponentially in the number of qubits

- Random circuit initialization
- Loss function locality in shallow circuits (M. Cerezo *et al.*, arXiv:2001.00550)
- Ansatz choice: TTN, CNN (Zhang *et al.*, arXiv:2011.06258, A Pesah, *et al.*, *Physical Review X* 11.4 (2021): 041011.)
- Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

QCNN: A Pesah, *et al.*, *Physical Review X* 11.4 (2021): 041011

 $\rho_{\rm out}$

i = 0

J. McClean et al., arXiv:1803.11173

Kernel trainability and kernel concentration

Kernel values can concentrate exponentially around a common value

Need **exponentially larger number of measurements** to resolve

Figure 1. Kernel concentration and its implications on trainability: The exponential concentration (in the number of qubits n) of quantum kernels $\kappa(\boldsymbol{x}, \boldsymbol{x'})$, over all possible input data pairs $\boldsymbol{x}, \boldsymbol{x'}$, can be seen to stem from the difficulty of information extraction from data quantum states due to various sources (illustrated in panels (a) and (b)). The kernel concentration has a detrimental impact on the trainability of quantum kernel-based methods. As shown in panel (c), for a polynomial (in n) number of measurement shots, the sampling noise $\tilde{\Delta}$ dominates for large n and, as $\Delta \ll \tilde{\Delta}$, $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$ cannot be resolved from some other $\kappa(\boldsymbol{x}_k, \boldsymbol{x}_l)$, leading to a poorly trained model.

Study kernel trainability in our AD model (arxiv:2208.11060)

Our results so far..

- Multiple QML prototypes for different applications
 We can build expressive models and we can train them [©]
- Increasing level of precision
- Robustness against noise ?
- Scale is still a problem on current quantum hardware Complex data pre-processing
- Generalization

QML at CERN

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin Reiter, Higgs analysis with quantum classifiers, EPJ Web of Conferences, 251:03070, 2021

2000

1750

1500 -

1250

counts

750

500

250

1.5

ratio

target

10

20

Energy [GeV]

50

classical

simulator

ibmg montreal

noisy simulator

Kinga Wozniak, Unsupervised clsutering for a Randall–Sundrum Graviton at 3.5TeV narrow resonance, 5th IML workshop, May 2022

Chang S.Y. et al., Running the Dual-PQC

Tüysüz, Cenk, et al. "Hybrid guantum classical graph neural networks for particle track reconstruction." Quantum Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, BQiT 2021, 2022 CERN openlab Tech Workshop

O. Kiss. Quantum Born Machine for event generation, ACAT2021

Bravo-Prieto, Carlos, et al. "Style-based guantum generative adversarial networks for Monte Carlo events." arXiv preprint arXiv:2110.06933 (2021).

 10^{0}

Anomaly Detection

New Physics at the LHC

So far only **negative results** in **direct** (model dependent) searches

How to insure we do not miss potential discoveries?

V. Belis *et al.*, **Quantum anomaly detection in the latent space of proton collision events at the LHC**, arxiv:2301.10780

A typical hybrid QML workflow

Anomaly detection can point to new physics at the LHC

Model-agnostic!

Use a hybrid quantum-classical workflow

Standard Model jet data

Simulate QCD multijet production at the LHC (64 fb ⁻¹)

Jet is built of **100 highest-p**_T **particles** within $\Delta R < 0.8$ from its axis.

100 particles

Event selection:

- Two jets with $p_T > 200$ GeV and $|\eta| < 2.4$
- m_{jj} > 1260 GeV (emulate online selection)
- Each event is represented by its two highest- p_T jets.

Convolutional AutoEncoder compresses particle jet learning the **internal structure**

• Trained on background events

$$\mathbb{R}^{300}
ightarrow \mathbb{R}^{\ell}$$
 , $\ell = 4, 8, 16$

Unsupervised kernel machine

"Standard" kernel definition

$$k(x_i, x_j) \coloneqq \operatorname{tr}[\rho(x_i)\rho(x_j)] = \left| \langle 0|U^{\dagger}(x_i)U(x_j)|0\rangle \right|^2$$
$$\rho(x_i) \coloneqq U(x_i) \left| 0 \rangle \left\langle 0 \right| U^{\dagger}(x_i)$$

Train a kernel machine to find the hyperplane that maximizes the distance of the data from the origin of the feature vector space

$$egin{aligned} & \min_{w\in\mathcal{F},\,\xi\in\mathbb{R}^\ell,\,
ho\in\mathbb{R}} & rac{1}{2}||w||^2+rac{1}{
u\ell}\sum_i\xi_i-
ho \ & ext{subject to} & w\cdot\Phi(x_i)\geq
ho-\xi_i,\,\xi_i\geq 0,\,orall i, \end{aligned}$$

Data Embedding circuit

 $\nu \in (0,1)$ Is a **upper bound** on the fraction of anomalies in the training data set at 0.01 (at most 1% QCD training data are falsely flagged)

Results

Comparison to best-performing classical algorithm with similar complexity trained and tested on the same data

• RBF –based SVM

AUC shows marginal advantage for quantum algorithm

```
Evaluate performance at typical working, where \varepsilon_s = 0.6, 0.8
```

Quantum kernel machine works best for more complex physics

Characterizing the advantage

Higher is better

Given signal and background efficiencies, ϵ_s and ϵ_b respectively:

$$\Delta_{\rm QC}(\varepsilon_s) = \frac{\varepsilon_{\rm b}^{-1}(\varepsilon_s;Q)}{\varepsilon_b^{-1}(\varepsilon_s;C)}$$

Performance advantage is consistent

- Increase in the expressibility and entanglement up to L=4 improve performance, reduce it above
- Full entanglement is not better

Classical is better than 4 qubit QSVM

Reinforcement learning

Michael Schenk et al., **Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines.** arXiv:2209.11044

Quantum Reinforcement Learning

Agent interacts with environment

- Follow policy
- Find policy that maximizes reward

Expected reward is estimated by value function Q(s, a)

- **DQN**: Deep Q-learning (NN-based)
- FERL: Free energy-based RL (clamped Quantum Boltzmann Machine)

Implement the quantum NN on a set of qubits

Quantum computer calculates the **reward as the energy** of the qubit system

In this framework the agent is classical

Michael Schenk et al., **Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines**, e-Print: 2209.11044 [quant-ph]

Beam optimisation in linear accelerators

- Action: (discrete) deflection angle
- State: (continuous) BPM position
- Reward: integrated beam intensity on target
- **Optimality**: fraction of states in which the agent takes the right decision

• Quantum RL massively outperforms classical Qlearning (8±2 vs. 320±40 steps with e. r.)

Convergence and representational power

QRL use cases confirms advantage in terms of **model size** and **training steps**

Without experience replay

Michael Schenk, Elías F. Combarro, Michele Grossi, Verena Kain, Kevin Shing Bruce Li, Mircea-Marian Popa, Sofia Vallecorsa, **Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines.** arXiv:2209.11044

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines, e-Print: 2209.11044 [quant-ph]

Policy Gradient: $\nabla_{\theta^{\mu}}\mu = \mathbb{E}_{\mu}[\nabla_{\theta^{\mu}}Q(s,\mu(s|\theta^{\mu})|\theta^{Q})] = \mathbb{E}_{\mu}[\nabla_{a}Q(s,a|\theta^{Q})\cdot\nabla_{\theta^{\mu}}\mu(s|\theta^{\mu})]$

Actor-Critic Q-learning training D-Wave Advantage

Figure 11: Single RL agent training evolution on D-Wave Advantage Systems using the simulated AWAKE environment with a reward objective of -2 mm.

Successful evaluation on the real beam-line

Improving robustness

- Correlate expected model performance to data set properties
- Stabilizing training on NISQ
- Trainability vs expressivity robustness studies
- Evaluating generalisation
- Quantum vs classical data
- Algorithms beyond QML

Improving robustness

- Correlate expected model performance to data set properties
- Stabilizing training on NISQ
- Trainability vs expressivity robustness studies
- Evaluating generalisation
- Quantum vs classical data
- Algorithms beyond QML

Ensembles of quantum neural networks

NISQ regime affects QML performance. Can we build ensembles?

Bagging: best for **high variance**; reduces BPs by keeping the feature space limited

- 10 independently trained instances
- r_f :% of samples, r_n:% features

Study **regression** and **classification** tasks in toy and realistic datasets

Boosting: high bias models (little sensitivity to subsampling)

• AdaBoost, 10 repetitions

Dataset	Source	Nature	# Features	# Samples	Task
Linear	-	Synthetic	5	250	Regression
Concrete	UCI	Real-world	8	1030	Regression
Diabetes	Scikit-Learn	Real-world	10	442	Regression
Wine	UCI	Real-world	13	178	Classification

1 layer

QNN setup and simulated results

Choose relatively simple QNN:

n qubits = n features Ry single rotation gates CNOT in linear entanglement Local observable (σ_z)

Measure the generalisation error on test sample (20 %)

Bagging methods outperform full model and Boosting: shallower networks, fewer input features

Bagging brings significant advantage

Reducing resources: Best performance for low dimensionality

Robustness against noise:

Linear regression task on **IBM QPU** (ibm_lagos):

Bagging: 80% features, 20%samplesQNN: 4 qubit, 1 layer

QUANTUM TECHNOLOGY

Quantum machine learning for quantum data

Huang, et al., Science 376, 6598 (2022)

Work directly with quantum states.

Task: Drawing phase diagrams

- 1. Supervised classification using a convolutional QNN using the groundstates as input data.
- 2. Advantageous since quantum states are exponentially hard to save classically.
- 3. Bottleneck: we need access to classical training labels! Interpolation does not work

Cong, et al., Nat. Phys. 15, 1273–1278 (2019)

Setting the stage

- Train in easy (integrable) subregions
- Generalize to a full model¹
- Model: Axial Next Nearest Neighbor Ising (ANNNI) Hamiltonian:

$$H = J \sum_{i=1}^{N} \sigma_x^i \sigma_x^{i+1} - \kappa \sigma_x^i \sigma_x^{i+2} + h \sigma_z^i,$$

Senk, *Physics Reports*, **170**, 4 (1988)

Which is integrable for $\kappa = 0$ or h = 0.

TECHNOLOGY

Variational quantum data

Monaco, at al. arXiv: 2208.08748 (2022), accepted PRB

Results

Learn a similarity function between the data. Kottman, *et al., Phys. Rev. Research* **3**, 043184 (2021)

The CERN QTI is studying impact of Quantum Technologies in High Energy Physics:

- Some **preliminary hints** of advantage
- So far.. we can do **«as good as classical methods**». In many cases, limitations are hardware-related
- Need more robust studies to estimate performance and drive model development

We are now formulating a longer term research plan

Exclusion Region for QML in HEP?

QML is the right solution

Thank you!

November 20th-24th, 2023 @CERN

Quantum Techniques in Machine Learning

Sofia.Vallecorsa@cern.ch

Quantum sensing

Change of quantum state caused by the interaction with an external system:

- transition between superconducting and normal-conducting
- transition of an atom from one state to another

QUANTUM TECHNOLOGY

 change of resonant frequency of a system (quantized) quantum sensors & particle physics: what are we talking about?

Theory and Simulation

QFT: Focus on computations that are exponentially hard with classical methods. Ex. Sign problems in particle theory

- Dynamical Simulations of Lattice Gauge Theories
- Finite-Density Nuclear Matter
- Challenges related to digitization and truncation of filed representation (on a finite number of quantum states) and redundancy in the Hilbert space¹

Chang S.Y. *et al.*, Running the Dual-PQC GAN on Noisy Simulators and Real Quantum Hardware, QTML2021, ACAT21

ż

qGAN Benchmarks on hardware

Train models using **noisy simulator** and test the inferen $\frac{1}{2}$ **trapped-ion (IONQ) quantum hardware**

• For IBMQ machines, choose the qubits with the lowest

Dovrico	Readout error	$D_{KL}/D_{KL,ind}$
Device	CX error	$(\times 10^{-2})$
ibma jakarta	0.028	0.14 ± 0.14
ibiliq_jakarta	$1.367 \cdot 10^{-2}$	6.49 ± 0.54
ibm lagos	0.01	0.26 ± 0.11
	$5.582 \cdot 10^{-3}$	6.92 ± 0.71
ibma casablanca	0.026	4.03 ± 1.08
ibiliq_casabialica	$4.58 \cdot 10^{-2}$	6.58 ± 0.81
IONO	NULL	1.24 ± 0.74
	$1.59 \cdot 10^{-2}$	10.1 ± 5.6

QUANTUM TECHNOLOGY

Figure 4: Mean (a,c) and individual images (b,d) obtained by inference test on ibmq_jakarta (a,b) and IONQ (c,d).