The Light Dark Matter eXperiment

Pierfrancesco Butti on behalf of the LDMX Collaboration

Experimental Astro-Particle and Particle Physics Seminar April 3rd, 2023

> Stanford University

U.S. DEPARTMENT OF

Evidence of Dark Matter in the Universe

- There is clear evidence for the existence of Dark Matter (DM) in the Universe
 - Observation of the rotation speed of spiral galaxies
 - Gravitational lensing
 - The Bullet Cluster
 - Cosmic microwave background

NASA, ESA, M.J. Jee and H. Ford

The Bullet Cluster 1E 0657-56

Messier 33 <u>arXiv:9909252</u>

Dark Matter Particle Candidates

- Dark Matter constitutes
 85% of the matter in the
 Universe
- Standard Model (SM) does not provide any particle candidate
- In the last decades, extensive worldwide research program has been built to understand the particle nature of DM in the universe
- Many scenarios have been proposed and the search for a DM particle candidates continues...

Thermal Dark Matter

- Assume DM in thermal equilibrium with SM in the very early universe
- Thermal DM as relic of the hot early Universe is one of the most compelling paradigms
 - Generic: only non-gravitational interactions between DM and SM
 - **Predictive:** current relic density suggests interaction strength at accelerators
- The current relic density Ω_X is related to the annihilation cross section

$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle} \qquad \langle \sigma v \rangle = 3 \times 10^{-26} \ \frac{\mathrm{cm}^3}{\mathrm{s}}$$

Thermal Dark Matter Mass Range

Light Thermal Dark Matter - Hidden Sector

- Freeze-out scenario with Light Dark Matter (LDM) requires new light mediator to provide the correct relic abundance
- Dark Matter can belong to a **"hidden sector"** secluded from the SM
- Mutual interaction mediated by a massive gauge boson

Light Thermal Dark Matter - Hidden Sector

- Freeze-out scenario with Light Dark Matter (LDM) requires new light mediator to provide the correct relic abundance
- Dark Matter can belong to a "**hidden sector**" secluded from the SM
- Mutual interaction mediated by a massive gauge boson

- Additional spin-one gauge boson "dark photon A'", neutral under SM, hidden symmetry U(1)_D
- Kinetically mixing with SM $U(1)_{y}$ with factor ϵ
- Visible and invisible final states

Light Thermal Dark Matter - Hidden Sector

- Freeze-out scenario with Light Dark Matter (LDM) requires new light mediator to provide the correct relic abundance
- Dark Matter can belong to a "**hidden sector**" secluded from the SM
- Mutual interaction mediated by a massive gauge boson

- Additional spin-one gauge boson "dark photon A'", neutral under SM, hidden symmetry U(1)_D
- Kinetically mixing with SM U(1), with factor ε
- Visible and invisible final states

The minimal Dark Photon Dark Matter model is an ubiquitous benchmark for the physics community

Possible Dark photon signatures

Dark Matter at Accelerators

Thermal Origin of Dark Matter	Interaction between DM and SM	Production mechanism at accelerator-based experiments

Dark Matter at Accelerators

Dark Matter at Accelerators: scenarios

Dark Matter at accelerators: advantages

• Direct Detection

 Strong velocity / spin dependence of scattering spreads out direct detection cross sections

Dark Matter at accelerators: advantages

 m_{ν}^2

 m^4

Direct Detection

Strong velocity / spin dependence Ο of scattering spreads out direct detection cross sections

Dark Matter at accelerators: advantages

Dark Photon kinematics at a Fixed Target Experiment

Dark Photon kinematics at a Fixed Target Experiment

- A'→XX carry away most of the beam energy and escape undetected
 - Opposite behaviour for the bremsstrahlung emission

- Recoil electron p_T spectrum depends strongly on m_A for signal
 - Signal identification or extra-handle for background rejection

Background processes

• Main background:

- SM y Bremsstrahlung
- Vetoed by energy deposit in an electromagnetic calorimeter
- Precise incoming electron momentum measurement

Background processes

- SM y Bremsstrahlung
- Vetoed by energy deposit in an electromagnetic calorimeter
- Precise incoming electron momentum measurement

• Challenging background:

- Photo-Nuclear reactions producing neutral final states
- Rare reaction where photon leads to low deposited energy in the calorimeters
- Relative rate with respect to Bremsstrahlung ~ $10^{-8} - 10^{-11}$ ¹⁹

LDMX: Detector Design Drivers

- Flagship objective: missing momentum signatures
 - **Recoil electron** with energy much lower than beam and transverse momentum kick across the target.
 - Absence of any other particle with significant energy in the final state

Accelerator Requirements

Accelerator Requirements:

Low-intensity, multi-GeV electron beam (up to 10¹⁶ e- on target (EOT))

- Single electron on target per event
- Large beamspot (~20cm²) and high-repetition rate

Goals

- Identify individual electrons in the detectors at higher rate with fine spatial and temporal resolution
- Minimize the peak radiation dose and minimize radiation damage to the tracker and calorimeter systems

The Beamline: Linac to End Station A (LESA) at SLAC

- LCLS-II 4-GeV beam at SLAC:
 - Accelerates 186 MHz bunches
 - ~5k hours /year operation for photon science at ~930kHz:
 99% of bunches to dump
- Sector 30 Transfer Line (S30XL) drives ~60% of unused low-charge bunches to LESA with LDMX as primary user
 - LESA beamline installation and commissioning is planned for FY24-25
 - Early commissioning of LDMX with low-current CW in FY25
 - LCLS-II upgrade to 8 GeV in ~FY27-28

LDMX: Detector Design Drivers

- Flagship objective: missing momentum signatures
 - **Recoil electron** with energy much lower than beam and transverse momentum kick across the target.
 - Absence of any other particle with significant energy in the final state
- High efficiency SM background veto
 - **Resolve** recoil electron energy and momentum to separate from bremsstrahlung events
 - Eliminate rare neutral background events originating from pN reactions in the calorimeters

The LDMX Detector Concept

- Detector Design
 - Tagger Tracker with low acceptance and high resolution at beam energy
 - Recoil Tracker with large acceptance and high resolution at low particle momenta
 - **Electromagnetic calorimeter** with excellent sensitivity and granularity for EM/Had shower shapes determination and Minimum Ionizing Particles (MIP) tracking capability and for Missing Energy trigger
 - Hadronic calorimeter with good segmentation and very low energy veto threshold for neutral hadrons
 - Trigger scintillator for fast electrons-per-bunch counting

The Magnet and Tracker System

• Beamline

- **Dipole** magnet up to 1.5 T
- Trigger Scintillator
 - Arrays of scintillator bars for fast electron counting
- Tracker System design
 - Leverage experience, facilities and equipment from Heavy Photon Search SVT tracker built at SLAC
- Tagger Tracker:

7 double-strip layers, high p-resolution ($\sigma_u \sim 6 \text{ um } \sigma_v \sim 60 \text{ um}$) **Recoil Tracker:**

4 double-strip layers + 2 axial-only for increased acceptance.

Track Reconstruction - A community effort

- LDMX search requires high precision tracking
- Tagger:
 - Off-energy beam rejection
- Recoil:
 - Low particle momentum regime in a strongly non uniform B-field
 - LDMX leverages ACTS, modern library based on well-tested reconstruction from LHC experiments
 - Ties LDMX to the larger tracking community
 - $\circ \quad \text{As a small experiment} \rightarrow \text{focus on physics goals} \\ \text{using well supported tools}$

• Fully implemented in the LDMX reconstruction

arxiv:2106.13593

Tracking - Main figures of merit

 Tagger Tracker offers very precise incoming e⁻ momentum determination (σ_p ~ 50 MeV @ E_{beam} = 4 GeV)

Tracking - Main figures of merit

A. U

The Electromagnetic Calorimeter

- Si-W sampling calorimeter, from CMS HGCal
 - 32 Si Layers, ~40 X₀ depth for extraordinary shower containment
- **High-Granularity**: shower discrimination and MIP tracking to reject rare bkg, e.g $\gamma \rightarrow \mu^+ \mu^-$
- Fast Missing Energy Trigger

Event Rate

The Hadronic Calorimeter

- Scintillator based sampling calorimeter, technology from Mu2e Cosmic Ray Veto
- Alternating x/y orientation
 - High efficiency in detecting neutrons in the 0.1-10 GeV range
 - MIP Sensitivity
- Side HCAL design optimized for high-multiplicity final state and wide angle bremsstrahlung
- Readout adapted from ECAL HGROC

The LDMX Testbeam at CERN - Prototypes

- Prototypes of all HCAL components constructed and integrated successfully into testbeam (CERN April '22)
 - Comparison to Geant4 simulated response
 - Development of reconstruction algorithms

The LDMX Testbeam at CERN - Event Display

- Muon Candidate
 - Crisp signature in HCal

- Pion Candidate
 - MIP-like deposits followed by cloud of hits

The LDMX Testbeam at CERN - Additions and Motivations

- Successful test-beam to demonstrate Trigger Scintillator and HCAL response
 - TS response well modelled by Geant4 MC simulation
 - Excellent HCAL MIP identification capability

Data Acquisition (DAQ) Design and computing facilities

Backgrounds Overview and Dedicated Vetoes

Gaussian energy fluctuations

Rare reactions → products escape ECal and/or anomalous energy deposition

Irreducible prompt ∉

• Removes electro-nuclear (eN) bkg & rare invisible v processes

- Single scintillator bar with < 5 photoelectrons hits
- Targets neutral particles and soft products escaping ECAL

- **HCAL** hit Veto •
 - Single scintillator bar with < 5 photoelectrons hits 0
 - Targets neutral particles and soft products escaping ECAL Ο
- **MIP Tracking in ECAL** •
 - Veto on reconstructed single isolated track around y Ο direction

340

260

240

-10× (mm)

-20

-30

Results

• Expected **background free search** with 4×10^{14} electrons on target and $E_{beam} = 4 \text{ GeV}$

	Photo-n	uclear	Muon conversion			
	Target-area	ECal	Target-area	ECal		
EoT equivalent	4×10^{14}	$2.1 imes 10^{14}$	8.2×10^{14}	2.4×10^{15}		
Total events simulated	8.8×10^{11}	$4.7 imes10^{11}$	$6.3 imes 10^8$	$8 imes 10^{10}$		
Trigger, ECal total energy $< 1.5 \mathrm{GeV}$	1×10^8	$2.6 imes10^8$	$1.6 imes 10^7$	$1.6 imes 10^8$		
Single track with $p < 1.2 \mathrm{GeV}$	$2 imes 10^7$	$2.3 imes 10^8$	$3.1 imes 10^4$	$1.5 imes 10^8$		
ECal BDT (> 0.99)	$9.4 imes 10^5$	$1.3 imes10^5$	< 1	< 1		
HCal max $PE < 5$	< 1	10	< 1	< 1		
ECal MIP tracks $= 0$	< 1	< 1	< 1	< 1		

 Outstanding sensitivity in a mass range up to m_x < 100 MeV

Determination of LDM signal mass scale

- Recoil electron transverse momentum key final measurement
 - \circ $\,$ Not used in the other veto handles $\,$
 - Gives confidence in signal estimate of DM mass scale

Future Runs - Phase II

- Strategies to increase Phase-I reach
 - Change target density / thickness
 - Increase beam energy

 Future runs at higher energy will explore the phase space up to m₀ < 300 MeV

Physics Potential - Visible signatures

Physics Potential: guaranteed deliverables

• LDMX has a **broad discovery potential** in both invisibile and visible signatures of light dark matter production at an electron-beam facility

However, the physics potential is enriched by fundamental guaranteed deliverables:
 Measurement of electron-nucleon (eN) scattering in the forward region

Physics Potential: forward eN scattering measurements

- eN scattering as a probe for vN scattering
 - Known differences can be corrected given a complete reconstruction of the final state
- Strong force nuclear effects are the main source of uncertainty → identical between the two scattering processes

- LDMX design offers:
 - Full forward
 acceptance, nearly
 hermetic
 - Fully reconstructed initial and final state
 - Excellent neutron detection efficiency of the HCAL \rightarrow Challenge in v experiments

PhysRevD.101.053004

• LDMX has unique capability to inform neutrino interaction models in the regions most relevant to DUNE

Summary

• Thermal Dark Matter is a simple and compelling scenario, and the MeV-GeV scale is a good place to explore - logical extension of WIMP

• LDMX provides a world-leading sensitivity to sub-GeV DM and can test many predictive LDM scenarios

• LDMX has impressive physics discovery potential and guaranteed deliverables

• The experiment is ready to move forward with the construction phase

• LDMX could be taking data in 2-3 years after establishing the funding profile and make a major discovery shortly thereafter

Phase II Prospects

Phase II Prospects

52

• LDMX can access

- Important phase space relevant for DUNE
- Can extend to recoil electron acceptance up to
 - Polar angle $\theta = 40^{\circ}$
 - p_T > 200 MeV

MIP Tracking in ECAL

MIP Tracking rejects surviving PN events keeping >80% efficiency on signal

Tracking - Trackers resolution

Layer	1	2	3	4	5	6	7
z-position, relative to target (mm)	-607.5	-507.5	-407.5	-307.5	-207.5	-107.5	-7.5
Stereo Angle (mrad)	-100	100	-100	100	-100	100	-100
Bend plane (horizontal) resolution (μ m)	~6	~ 6	~ 6	~ 6	~ 6	~ 6	~ 6
Non-bend (vertical) resolution (μ m)	~ 60	$\sim \! 60$	~ 60	~ 60	$\sim \! 60$	~ 60	~ 60

TABLE I: The layout and resolution of the tagging tracker.

TABLE II: The layout and resolution of the recoil tracker.

Layer	1	2	3	4	5	6
z-position, relative to target (mm)	+7.5	+22.5	+37.5	+52.5	+90	+180
Stereo Angle (mrad)	100	-100	100	-100	-	-
Bend plane (horizontal) resolution (μ m)	≈6	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6
Non-bend (vertical) resolution (μ m)	≈ 60	≈ 60	≈ 60	≈ 60	-	-

Tracking - Impact parameters at the target

Dark Photon kinematics at a Fixed Target Experiment

Summary

- Thermal Dark Matter is a simple and compelling scenario, and the MeV-GeV scale is a good place to explore logical extension of WIMP
- LDMX provides a world-leading sensitivity to sub-GeV DM and can test many predictive LDM scenarios
- LDMX has also impressive sensitivity to:
 - Visible signatures of mediators and Dark Sectors particles
 - Broad range of new physics scenarios with missing energy/momentum signatures
 - Important eN scattering measurements to constrain neutrino cross-section uncertainties for DUNE
- The experiment is ready to move forward with the construction phase
 - Dark Matter New Initiative R&D funding has been very productive
 - LESA Beamline construction is underway at SLAC
 - Detector technologies have been proven by other HEP experiments
 - Test-beam at CERN validated key detector developments
- LDMX could be taking data in 2-3 years after establishing the funding profile and make a major discovery shortly thereafter

Trigger - LDM

The Hadronic Calorimeter

- Scintillator based sampling calorimeter, technology from Mu2e Cosmic Ray Veto
- Alternating x/y orientation
 - High efficiency in detecting neutrons in the 0.1-10 GeV range
 - MIP Sensitivity
- Side HCAL design optimized for high-multiplicity final state and wide angle bremsstrahlung
- Readout adapted from ECAL HGROC

