

First results from the FASER experiment

Hidetoshi OTONO (Kyushu University)

15th May, 2023 University of Zurich

Introduction

Most people belive physics beyond SM due to:

- no explanation of dark matter, neutrino mass, baryon assmmetry..
- theoritical issues, like hierarchy problem, quantum gravity,

Also, intensive discussion on several experimental anomalies:

• muon g-2, flavor anomaly, W mass...

Discovery of a new particle followed by detailed measurement must help this situation

- LHC has been a great energy-frontier collider, which could both produce and detect new particles
- however optimistic scenario used for designing experiments failed
 - e.g, SUSY should have discovered already in Run 1 (2010-)
- I joined ATLAS experiment in 2012, and also started FASER experiment in 2018.

New challenge would be definitely needed !

Busy 2017 with Kyle for SCT operation

SCT Frontend link swapping to equalize data size to ROD 31.03.2017

My last day as SCT run coordinator 02.11.2017

Then I took parental leave until March 2018

ATLAS experiment since 2012

Operation of Silicon strip detector (SCT), serving all physics results

- e.g, Discovery and measurement of the Higgs boson
 - Summary paper published from Nature on July 4th, 2022 (10th anniversary)
- Exploit great performance against 2 times higher inst. lumi. compared to design
 - Throughout Run2 (2015-2018) and steady start in Run3 (2022-2025)
 - SCT run coordinator in 2016-2017
 - Performance paper published from JINST (2109.02591)

Primary Displaced Vertex (ID) ID ECAL HCAL MS

B = 443 n

= 122.5 m

SCI

Long-lived particle search since 2014, cornering SUSY scenario

- Displaced vertex search, assuming Bino LSP
 - Pheno papar with theorists (1504.00504, 1506.08206)
 - Run-1 search (1504.05162) and early run-2 search (1710.04901)
- Displaced track search, assuming Higgsino LSP
 - Pheno paper with theorists (1701.07664)
 - Full run-2 search in progress

Encountered FASER in 2018 at Aspen

Aspen 2018 - The Particle Frontier Sun 25/03 Fri 30/03 Sat 31/03 All days Mon 26/03 Tue 27/03 Wed 28/03 Thu 29/03 16:00 **Coffee and Tea** Flug Forum, Aspen Center for Physics 16:00 - 16:30 ATLAS results on searches for long-lived particles Hidetoshi Otono Flug Forum, Aspen Center for Physics 16:30 - 16:50 CMS results on searches for long-lived particles Ted Ritchie Kolberg 17.00 Flug Forum, Aspen Center for Physics 16:55 - 17:15 Searches for new particles at LHCb J Michael Williams Flug Forum, Aspen Center for Physics 17:20 - 17:40 Coffee Break 18:00 Flug Forum, Aspen Center for Physics 17:45 - 18:15 Search for Light Dark Sector at BaBar Chunhui Chen 🥝 Flug Forum, Aspen Center for Physics 18:15 - 18:35 A COmpact DEtector for eXotics at LHCb Simon Knapen Flug Forum, Aspen Center for Physics 18:40 - 19:00 19:00 Far Detectors Panel Andrew Haas et al. Flug Forum, Aspen Center for Physics 19:05 - 19:30

FASER was proposed Aug 2017 (1708.09389) by four theorists in US.

FASER: ForwArd Search ExpeRiment at the LHC

Idea: search for LLP in forward direction

- large LHC event rates in forward direction
- energetic particles very forward $\theta < 1 \text{ mrad}$
- → We propose small inexpensive detector downstream from IP

Location: along beam axis after LHC curves

- LHC Infrastructure acts as natural filter
- promising location:TI-18 /TI-12

Detector: small, cheap, operates concurrently

- physics: dark photon, dark Higgs, HNLs ...
- distinct signature: 2 tracks with TeV energy
- equipped with tracking system + magnetic field (+ ECAL)

Current Developments & Next Steps

- FASER collaboration is growing
- realistic background estimate: FLUKA/measurements
- detector design & GEANT4 simulations
- explore more physics opportunities: ALPs, IDM, v's ...

TI-12

Felix Kling FASER: ForwArd Search ExpeRiment at the LHC UCIRVINE

Just 1-page summary for the Far Detectors Panel

Since April 2018, I'm 9th FASER collaborator (5th experimentalist) with ideas to use **SCT spare module for tracker** and **emulsion detector for background survey**

ATLAS

FASER experiment

FASER is a new forward experiment of LHC, located 480 m downstream from the ATLAS IP. Successfully started data taking in Run 3 from July 2022 for:

- Search for new weakly-coupled particles in the MeV-GeV range
 - proposed to CERN in 2018, approved by CERN in 2019
- Study of all flavors of neutrinos at the TeV-energy frontier
 - proposed to CERN in 2019, approved by CERN in 2020

 v_e , v_μ , v_τ ,

A', a, mCPs, DM, ...

Favorable location, except that refurbishment is needed to be an experimental site.

 v_e , v_μ , v_τ ,

• Background from collision point is only high-energy muon at about 1 /cm²/sec, thanks to ~100-m rock

A', a, mCPs, DM, ...

• Radiation level from LHC is quite low, around 4×10^{-3} Gy/year (= 4×10^{7} 1-MeV neutron/cm²/year)

Searching for new particles in MeV-GeV range

Motivated by dark matter

- Example is a dark photon (A') vector portal to dark sector
- Could be produced very rarely in decay of a π^0
- Could be long-lived due to small coupling constant

Huge flux of π^0 produced in LHC collision provides strong opptunity

• O(10¹⁵) of π^0 in FASER acceptance (r = 10 cm) in Run 3

480m

- corresponding to 10⁻⁸ solid angle
- Very energetic typically E > 1 TeV

Dark photon (A') decays into a collimated pair of charged paritcle

• $m_{A'} = 200$ MeV and E = 2 TeV, the separation is O(200) um at the first tracker

Searching for new particles in MeV-GeV range

FASER is the first far collider experiment for new particle searches

Unique approach provides senstivity to unexplored region with the first 1 fb⁻¹ of the LHC collision

LHC finished the 2022 operation end of November

- About 40 fb⁻¹ delivered at the ATLAS interaction point
- FASER successfully collected the data, the first result presented today
 - 96.1% delivered lumi recorded
 - red arrow: emulsion exchanged
 - green arrow: calo gain optimized ٠

10

FASER will also have sensitivity to other dark sector scenarios including ALPs, other gauge bosons, ...

Comprehensive summary found in Phys. Rev. D 99, 095011 (2019)

LHCb D'

Exploring neutrinos at the TeV-energy frontier

The LHC collisions also produce a copious number of neutrinos at uncharted energies

• FASER is the first experiment to probe collider neutrinos

Phys. Rev. D 104, L091101

In 2018, a 29 kg emulsion detector had been installed

- the fiducial mass used for the pilot analysis was only 12 kg
- exposed to 12.2 fb⁻¹ data
- best fit value of 6.1 neutrino interactions (3.3 expected) 2.7σ

In Run3, the first observation is achieved by electric detectors, i.e, silicon tracker, scintillator and calorimeter

• the first result presented today

Exploring neutrinos at the TeV-energy frontier

Sensitive to new physics by measuring scattering cross sections and studying the final states

based on PhysRevD.104.113008

• Emulsion detector provides great ID for all leptons and heavy flavor hadrons from neutrino interaction

Civil engineering work

Nov 2020

The floor in TI12 excavated by ~50 cm to have the FASER detector on beam axis

FASER detector installation

FASER spectrometer (magnets and tracker), scintillators and calorimter

Emusion/Tungsten detector, IFT and scintillator

Emulsion/Tungsten detector

All flavors of neutrino interactions can be identified

- Heavy quark production also can be distinguished
- 730 x 1.1-mm-thick tungsten plates, interleaved with emulsion films
- 25 x 30 cm², 1.1 m long, 1.1 ton detector (220 X_0 / 8 λ_{int})
 - + ~10000 $v_{\mu\prime}$ ~1000 v_e and ~10 v_{τ} expected in Run 3
- 3 replacements each year
 - emulsion will be produced a few months before installation

14

Magnet system

The magnets were designed, constructed and measured by the CERN magnet group

Three 0.57 T permanent dipole magnets (1.5m-long x 1 and 1m-long x 2)

- Sufficient magnetic field to separate a pair of charged particles, assuming tracking detectors with good resolution
- Compact and robust design adapted to cope with limited space in the tunnel and limited access during Run3
- The assembled dipoles were measured with single-stretched wire (SSW) and 3D Hall probe mapper

Decay volume of new particles

Target for neutrino

Tracker station

ATLAS SCT module:

- 6cm x 12cm x 2 sides (40 mrad) ٠
- 80 um pitch/ 768 strips per side
- Resolution: 17 um x 580 um
- 6 ASICs per side

Four stations total; one station as interface tracker to emulsion detector and three stations for spectrometer

Based on ATLAS SCT modules - 4 station x 3 layers x 8 modules = 96 modules

Decay volume of new particles

Tracker station performance

Hit efficiency of $99.64 \pm 0.10\%$ at 1.0 fC threshold and 150V

- 99.7% strips are active
- Uniform distiribution inside magnet aperture except for gaps between SCT modules

Scintillation detectors

Four scintillator stations are commissioned and installed

- Veto incoming charged particle, precise timing, and pre-shower for calorimeter
- Scintillators, light guides and PMT housing constructed at CERN scintillator lab (EP-DT)

Scintillator	Efficiency
NuVeto-0	0.9999805(5)
NuVet0-1	0.9999810(5)
Veto-0	0.9999985(1)
Veto-1	0.9999984(1)
Veto-2	0.9999986(1)

Scintillator performance

More than 99.99% efficiency achieved for each scintillator

• O(10⁸) muon expected in Run3 would be rejected; sufficient for zero background in new particle search

Trigger scintillator provides timing resolution of 423 ps, sufficinet to identify bunch crossing ID of LHC

• Average time of two PMTs on both ends of the trigger scintillator to correct for timewalk

Electromagnetic calorimeter

Calorimeter utilizes spare LHCb ECAL module x 4

- one module has:
 - 12 cm x 12 cm x 75 cm (25 X₀)
 - 66 layers of (2mm lead and 4mm scintillator)

EM Calorimeter – performance

LHC collision data shows calorimeter provides timing resolution of 256 ps, requiring:

- EM energy is above 4 GeV
- only events with unsaturated PMT signals
- BCID to be consistent with a colliding bunch ID

Close to the intrinsic 239 ps timing resolution of the LHC

Testbeam at SPS in 2021 summer

Stable data taking thoughout 2022

The number of bunches in LHC has reached 2400 since August 2022

- Maximum trigger rate around 1.2 kHz, giving dead time less than 2%
- Physics coincidence trigger (foremost veto and the preshower scintillator station) around 200Hz
 - our main triggered background is not muons passing through from IP1 but particles triggering individual trigger stations

• only 850 pb⁻¹ (< 2.5% of full dataset) data lost due to operational issues

Muon event from LHC collission

To ATLAS IP

Reconstructed momentum 21.9 GeV

Tracker alignment in progress

Track based alignment clearly improves residual and track chi2 for the three tracker station

- These three tracker stations are connected to the backbone, mechanically decoupled from fourth tracker station (IFT) •
- Without alignment (44.0 um) -> With alignment (28.9 um) : comparable to MC in ideal geometry (29 um) ٠

Alignment with IFT in progress

Dark photon search

Analysis was **blinded for E>100 GeV** events **without any veto signals**

Signal: select e+e- pairs appearing in the decay volume

2. No signal in any of veto scintillators (<40 pC ~ 0.5 MIP)

1. Events in collision crossing,

4. Exactly two good quality tracks with p > 20 GeV

3. Timing and preshower scintillators consistent with ≥ 2 MIPs

- Both tracks in fiducial tracking volume, r < 95mm
- Both tracks extrapolate to r < 95mm in veto scintillators

Background estimation

Major background - Neutrino background

- Estimated from Genie simulation (300ab⁻¹)
 - Uncertainties from neutrino flux & mismodeling
- Predicted events with E(calo)>500GeV: 0.0018±0.0024 events
 - Largest background in analysis

Minor backgrounds

- Neutral hadrons (e.g. Ks) from upstream muons interacting in decay volume : (2.2±3.1)×10⁻⁴ events
- Veto inefficiency: negligible
- Non-collision background: negligible

Result

No events seen in unblinded signal region

• Total background: 0.0020±0.0024 evts,

Source	Systematic Uncertainty	Typical Effect on Signal Yield			
Theory, Statistics and Luminosity					
A' cross section	$\frac{0.15 + (E_{A'}/4 \text{ TeV})^3}{1 + (E_{A'}/4 \text{ TeV})^3}$	15-45%			
Luminosity	2.2%	2.2%			
MC statistics	$\sqrt{\Sigma W^2}$	1-2%			
Tracking					
Momentum scale	5%	< 0.5%			
Momentum resolution	5%	< 0.5%			
1-track efficiency	3%	3%			
2-track efficiency	15%	15%			
Calorimetry					
Energy scale	6%	< 1%			

LHC neutrino search

Signal: no signal in front veto and one high momentum track

FASER Preliminary

 $\mathcal{L} = 35.4 \text{ fb}^{-1}$

 10^{2}

Events

1. Good collision events

4. Timing and preshower consistent with \geq 1 MIP

•

No signal (<40 pC) in 2 front vetos
 Signal (>40 pC) in other 3 vetos

- 5. Exactly **1 good fiducial** (r < 95 mm) track
- $p_T>100$ GeV and $\theta<25$ mrad
- Extrapolating to r<120 mm in front veto

Background estimation

Neutral hadron background: 0.11 ± 0.06 events expected

Results – the first observation of LHC neutrino

Find 153 event after unblindig, corresponding to signal significance of 16 σ !!

Opening up a new filed – neutrino physics at collider !!

Electron Neutrino Event "Candidate"

Analysis of FASERv emulsion detector underway

• Have multiple candidates including highly ve like event

33

• 175° between e & rest

Breakdown of the LHC neutrino production

Neutrino-induced DIS could probes strangeness puzzle

- Provide new information by measuring branch of D -> μ
- Constrain proton PDF, and nuclear PDFs

Neutrino is generated from low x & high x regions of the colliding protons

• Low-x Gluon PDF affecting Higgs production x-sec in FCC, intrinsic charm, and so on

Upgrade planned for 2025

The preshower scintillator will be replaced by silicon pixel detector

- Installation is planned at the end of 2024, aiming to take data in 2025 (the last year of Run3)
- Separation of 2 close-by gammas down to 200 um enables us to get strong sensitivity for ALP -> 2 gamma
- Monolithic Active Pixel Sensors (MAPS) with SiGe BiCMOS technology developed by University of Geneve

CERN research board formally approved this preshower project in April 2022

• Technical proposal is public: <u>https://cds.cern.ch/record/2803084/</u>

Existing

preshower

Calorimeter

preshower Calorimeter

Tracker

Tracker

Decay volume

Decay volume

Veto

Toward HL-LHC

A new facility called the Forward Physics Facility (FPF) under intensive discussion

- FASER progressing well, however TI12 is too small to exploit full physics potential in the forward region of the LHC
- Discussion started since 2020, summarizing white paper in March 2022 for snowmass
 - 5th FPF Meeting, Nov 2022: https://indico.cern.ch/event/1196506/
- 617 m from ATLAS interaction point (opposite side of FASER) near SM18
- 65m long, 9.7m wide, 7.7m high cavern; 88m high shaft and surface building

CERN civil engineering team provides a preliminary cost estimation of 40 MCHF including services

• ongoing drilling of a core at the proposed FPF location to assess the geological conditions.

At the moment there are 5 proposed experiments to be situated in the FPF. With different capabilities and covering different rapiditiy regions:

- FLArE
 - $\mathcal{O}(10 \text{tn})$ LAr TPC detector
 - DM scattering
 - Neutrino physics (ν_{μ}/ν_{e} , capabilitty for ν_{τ} under study)
 - Full view of neutrino interaction event
- FASERv2
 - O(20tn) emulsion/tungsten detector (FASERv x20)
 - Mostly for tau neutrino physics
 - Interfaced to FASER2 spectrometer for muon charge ID ($\nu_{\tau}/\overline{\nu}_{\tau}$ separation)
- AdvSND
 - Neutrino detector slightly off-axis
 - Provides complementary sensitvity for PDFs from covering different rapidity to FASERv2
- FASER2
 - Detector for observing decays of light dark-sector particles
 - Similar to scaled up version of FASER (1m radius vs 0.1m)
 - Increases sensitivity to particles produced in heavy flavour decay
 - Larger size requires change in detector and magnet technology: Superconducting magnet
- FORMOSA
 - Milicharged particle detector
 - Scintillator based, similar to current miliQan experiment

FASER/FASER 2 physics reach for various models

Phys. Rev. D 99, 095011 (2019))

Improvement of the TeV neutrino study

O(10³-10⁴) of Tau neutrino, allowing detailed measurement of final state

- The first Discrimination tau neutrino / anti-tau neutrino
- New information of proton PDF (gluon, charm, strange ..)

MilliQan at LHC for millicharged particle search

33m from the CMS interaction point behind 17 m of rock, and

FORMOSA at FPF

"FORMOSA demonstrator" in FASER cavern would provide critical insights into backgrounds/operation in forward environment

Conclusion

FASER is a new forward experiment at the LHC in the unused tunnel, TI12 for:

- discovery of a light weakly-coupled particle in MeV-GeV range
 - Spectrometer (Tracker and magnets), scintillators and calorimeter installed in March 2021
 - preshower scintillator will be replaced by silicon pixel detector at the end of 2024
- probe all flavors of neutrinos at the TeV-energy frontier
 - Emulsion/Tungsten detector, veto scintillator and interface tracker installed in March 2022
 - Emulsion/Tungsten detector replaced every Technical Shutdown (~3 times in one year)

Successful data taking from the beginning of LHC Run3 in 2022

- the first search of MeV-GeV weakly-interacting particle -- no discovery but more will come soon!
- the first observation of TeV neutrino produced by colliders

Towards HL-LHC, Forward Physics Facility is proposed to host several experiments

- Workshop organized every half year for intensive discussion toward conceptual design
 - The next one (FPF6) will come in June 8-9 <u>https://indico.cern.ch/event/1275380</u>
 - Please register and join !!

FASER is supported by:

In addition, FASERv is supported by:

FPF studies supported by:

And would additionally like to thank

- LHC for the excellent performance in 2022
- ATLAS for providing luminosity information
- ATLAS for use of ATHENA s/w framework
- ATLAS SCT for spare tracker modules
- LHCb for spare ECAL modules
- CERN FLUKA team for background sim
- CERN PBC and technical infrastructure groups for excellent support during design construction and installation

Data size

- On /eos/experiment/faser (in directory structure):
 - Raw data 89.7 TB
 - Reco data 31.9 TB
 - Simulation 15.7 TB
 - Physics Ntuples 1.9 TB

Background simulation

Simulation implied that FASER would be located in very lucky place

- 10⁻³ less flux compared to just 1m away since LHC magnets seems to sweep charged particles
- No neutral particle by 100m thick rock

x (cm)

HL-LHC: Muon+ distribution at FASER HL-LHC: Muon- distribution at FASER 10^{-8} 500 10-8 500 400 400 (cm⁻²) primary collision (cm⁻² 300 300 collision 10⁻⁹ 10⁻⁹ FASER 200 y (cm) (cm) prim 100 100 10⁻¹⁰ වි 10⁻¹⁰ b fluence -100 -100 10-11 10-11 -200 -200 49 100 200 300 400 500 -400 -300 -200 -100 0 -400 -300 -200 -100 0 100 200 300 400 500

x(cm)

should be confirmed by measurement

Background measurement in 2018

No infrastructure in 2018 – emulsion detector provided quick/reliable measurement

• Good agreement with FLUKA simulation, accelerating designing the FASER experiment

	beam	observed tracks	efficiency	normalized flux, all	normalized flux, main peak
	$[\mathrm{fb}^{-1}]$	$[{\rm cm}^{-2}]$		$[fb cm^{-2}]$	$[fb \ cm^{-2}]$
TI18	2.86	18407	0.25	$(2.6 \pm 0.7) \times 10^4$	$(1.2 \pm 0.4) \times 10^4$
TI12	7.07	174208	0.80	$(3.0 \pm 0.3) \times 10^4$	$(1.9 \pm 0.2) \times 10^4$
FLUKA simulation, E>100 GeV		1×10^4			

First collider neutrino candidate

2105.06197 1000 µm Poublet Front FASEREM LOS

<mark>Jonathan Feng</mark>

This opens up a new field: neutrino physics at colliders

FASER Pilot Detector

Suitcase-size, 4 weeks \$0 (recycled parts)

6 candidate neutrinos

F

All previous collider detectors

Building-size, decades ~\$109

0 candidate neutrinos

Neutrino-induced DIS could probes strangeness puzzle

- Provide new information by measuring branch of D -> μ
- Constrain proton PDF, and nuclear PDFs

Neutrino is generated from low x & high x regions of the colliding protons

• Low-x Gluon PDF affecting Higgs production x-sec in FCC, intrinsic charm, and so on

Astoroparticle physics

13 TeV center-of-mass pp collision corresponds to 100 PeV proton in lab frame

Better understanding of atomospheric neutrino could improve the IceCube experiment 53

Trigger and Data acquisition

Readout electronics in TI12

- Tracker: Custom GPIO board
- Scintillator and Calorimeter: CAEN digitiser
- Trigger: Custom GPIO board
 - 500 Hz expected rate
 - Clock and bunch taken from LHC
- Ethernet switch -> Servers on surface

All components are installed

- High rate test at 1 kHz successful
- Monitoring tool in place
 - Status of the detector and data taking

Paper is published: 2021 JINST 16 P12028

More detail about FASER location

QCD in the forward region

QCD@FPF

- Wide range of QCD studies relating to:
- ★ Forward particle
 production mechanisms in and/or
 the central detector.
- * Neutrino induced DIS scattering at FPF.

• Both aspects can provide new understanding of QCD physics, complementary to ongoing LHC (...) programme.

Lucian Harland-Lang, 4th FPF workshop:

https://indico.cern.ch/event/1110746/contributions/4701724/attachments/2382412/4071581/lhl_FPF_QCD.pdf

My major cotributions to FASER would be:

Tracking detector for a pair of charged particle from long-lived particle, e.g dark photon

- Brought idea 2018 April to make use of spare modules from ATLAS silicon micro-strip detector (SCT)
 - I did SCT data quality coordinator (2013-2016) and SCT run coodinator (2016-2017)
- Taken a lead as a Project leader after getting approval from CERN in 2019
 - from design, development, integration, installation, and operation
 - dealing with the COVID situation

In-situ measurement of background in spring/summer 2018 (before finishing Run2)

- Brought idea 2018 April to install emulsion detector, which was placed 2018 July
 - succssful measuement, confiming good agreement with estimation
- Derived Neutrino program in the FASER experiment with emulsion experts
 - Build and install additional tracking detector to integrate the emulsion detector with other detectors

Exective board member since 2019 to grow the FASER experiment

Background estimation

Veto inefficiency

- Veto layer scintillators efficiency >99.998%
- Measured layer-by-layer using muon tracks in trackers pointing back
- With all layers, even 10⁸ muons going through veto produces negligible background even before any other selections applied

Neutrino background

- Estimated from Genie simulation (300ab⁻¹)
- Uncertainties from neutrino flux & mismodeling
- Predicted events with E(calo)>500GeV: 0.0018±0.0024 events
 - Largest background in analysis
- Background from neutrino induced hadrons upstream found to be negligible

Background estimation

Non-collision background

- Cosmics measured in runs with no beam
- Near-by beam debris measured in non-colliding bunches
- No events observed with≥1track or E(calo) > 500 GeV individually

Neutral hadrons (e.g. Ks) from upstream muons interacting in decay volume

- Heavily suppressed since
 - Muon nearly always continues after interaction
- Has to pass though 8 interaction lengths
- Decay products have to leave E(calo)>500GeV
- Estimated from lower E events with 2 and 3 tracks and different veto conditions: (2.2±3.1)×10⁻⁴ events