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Modern society is critically dependent upon stable timing signals typically disseminated by global 
navigation systems such as GPS, but the highest degree of timing accuracy is afforded by laboratory-
based primary frequency standards [1]. The trade-off between clock frequency stability and Size, 
Weight and Power (SWaP) is the subject of intense research, with high-performance portable clock 
systems a necessity for a large array of real-world applications and in GPS-denied environments [2]. 
We report progress on the development and out-of-lab demonstrations of a next-generation optical 
timing reference based on the dual-wavelength excitation of the 5S1/2 → 5D5/2 two-photon transition 
of rubidium-87 [3, 4]. This work aims to develop a commercial portable frequency reference that has 
greatly improved frequency stability over the best commercially available technologies. We make 
use of the robustness of mature laser telecommunications technologies, FPGA-based control systems 
and automation, and a compact optical frequency comb to generate stable clock outputs in the optical 
(778nm, 385THz) and radio frequency (1GHz) domains for interfacing with both optical systems and 
conventional electronics [5]. We have measured fractional frequency instability of the rubidium clock 
of 1.5×10-13 at 1s, integrating down at 1/√τ to 3×10-15 at 8,000s. 
Variants of this clock architecture have operated successfully in harsh out-of-lab environments in-
cluding onboard a moving van and for several weeks operating autonomously on the deck of a large 
maritime vessel during active sea trials. The clock is currently being developed for space operations. 
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Fig.1. Left to right: 19" rack mounted portable Rb clock held within 11 rack units (11U); readout of 

clock during operation in vehicle; Clock performance of 1.5×10-13 at τ = 1s, integrating down at 1/√τ to 3×10-15  
at 8,000s, clock loading onto HMNZS Aotearoa (within shipping container, circled) prior to naval exercises. 


