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We explore applicability of several variations of pure frequency-based spectroscopic techniques to 

molecular systems and their metrology. In these techniques we take advantage from linear phenom-

enon well-known as mode pushing in an optical cavity with an absorbing medium and intrinsic phys-

ical connection between absorption and dispersion. It was demonstrated that mode frequency shifts 

measurements allow to obtain molecular spectra with exceptional accuracy and precision.  

Use of laser tightly PDH-locked to high-finesse cavity filled with absorbing gas allowed scanning of 

narrow cavity mode resonance and its frequency determination with sub-Hz uncertainties. This tech-

nique called cavity mode-dispersion spectroscopy (CMDS), with its primary observable being fre-

quency [1], is immune to bias caused by nonlinearity in the detection of light intensity affecting most 

commonly used spectroscopic approaches. The CMDS allows molecular transition intensities deter-

mination with sub-promille relative uncertainty [2,3] and its traceability to primary frequency stand-

ards of the SI. Moreover, CMDS was applied to Doppler-free saturation measurements of weak mo-

lecular transitions and appeared to be superior to other techniques [4]. Combination of optical fre-

quency comb as a light source and a Fourier transform spectrometer led to realization of a broadband 

CMDS [5]. Finally a fast dual-comb detection scheme was implemented to CMDS [6,7]. Even faster 

realization of these approaches is possible by beating light buildup or decaying from the optical cavity 

with a local oscillator precisely detuned from the cavity resonance. We demonstrated the cavity 

buildup dispersion spectroscopy (CBDS) [8] allowing rapid measurement of the mode frequency on 

a time scale shorter than the cavity decay time and a broadband experiment using dual-comb cavity 

ring-down spectroscopy (DC-CRDS) [9].  

The pure frequency-based dispersive spectroscopy seems to be an attractive alternative to intensity-

based measurements of cavity decay rates or light absorption, especially in studies of weak molecular 

transitions.  Applications include reference data for a new generation of spectroscopic databases, 

studies of fundamental physics, gas metrology and Doppler width thermometry.  
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