Ultrastable Lasers
New Developments and Challenges

Uwe Sterr, Jialiang Yu, Thomas Legero, Sofia Herbers, Daniele Nicolodi, Mona Kempkes, Chun Yu Ma, Fritz Riehle
Physikalisch-Technische Bundesanstalt, Braunschweig Germany

Dhruv Kedar, John M. Robinson, Jun Ye
JILA, NIST and University of Colorado, Boulder, CO, USA

The 9th Symposium on Frequency Standards and Metrology
Kingscliff, Australia, 16-20 October 2023
Progress of cavity-stabilized lasers

- room-temperature glass cavities
- cryogenic cavities

10^{-17} 10^{-16} 10^{-15} 10^{-14} 10^{-13}

Stanford
MPQ
Uni Konstanz
NIST
JILA
SYRTE
MPQ
NPL
JILA
PTB
JILA/NIST
PTB/NIST
PTB/JPB
PTB/JILA
JILA/PTB

21 cm silicon @ 124 K
48 cm ULE
6 cm silicon @ 4 K
1 \times 10^{-17}?

Transportable 1400 nm Sr clock laser

fused-silica mirror substrates

20 cm ULE glass spacer

crystalline AlGaAs/GaAs mirror coatings

acceleration sensitivity:
$3(3) \times 10^{-11}$/g

Cryogenic silicon optical resonator

Silicon spacer
dielectric mirror coatings
• $L = 212$ mm
• $T = 124$ K
zero thermal expansion
Cryogenic silicon optical resonator

Two systems with dielectric coatings

- $L = 212 \text{ mm}$
- $T = 124 \text{ K}$
- Stability limited by thermal noise to 4×10^{-17}
- Si3 moved to JILA in 2017

Flywheel for an optical timescale

Demonstration of a Timescale Based on a Stable Optical Carrier

William R. Milner,1,* John M. Robinson,1 Colin J. Kennedy,1 Tobias Bothwell,1 Dhruv Kedar,1 Dan G. Matei2, Thomas Legro2, Uwe Sterr2, Fritz Riehle2, Holly Leopardi3, Tara M. Fortier,3 Jeffrey A. Sherman,3 Judah Levine3, Jian Yao3, Jun Ye3,4 and Eric Oelker5,6

1JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
2Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
3National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

- daily measurements to Sr-lattice clock with 25 % uptime
- estimated error < 150 ps over one month

Cavity drift in June 2023:
-48 µHz/s
-4.1 Hz/day
at 1542 nm
(abut 1000 times less than ULE)
Brownian Noise in Fabry-Perot Cavities

High-finesse optical cavity

Fluctuation-dissipation theorem relates length fluctuations to mechanical loss ϕ_x

$$S_x \propto \frac{T \cdot \phi_x}{f}$$

$$\sigma_y^2 = 2 \ln(2) \cdot \frac{S_x(1 \text{ Hz})}{L^2}$$

thermal noise for a 20 cm long cavity:

$$\sigma_y = 2.5 \times 10^{-16}$$

thermal noise reduction:

- go to low temperatures T
- enlarge cavity length L
- enlarge mode diameter
- choose low loss material ϕ_x

AlGaAs crystalline mirror coatings

Cavity length: \(L = 212 \text{ mm} \)
Mirrors: 2x plano-concave (2 m ROC)
Finesse: 380 000 at 124 K
Free Spectral Range: 707 MHz
Birefringent mode splitting: 200 kHz
Thermal noise: \(\text{mod} \, \sigma_v(\tau) = 1 \times 10^{-17} \)

Cole et al., Nat. Phot. 7 (2013) 644

GaAs/AlGaAs DBR disc
silicon substrate

coating: \(n_{\text{slow}} > n_{\text{fast}} \)
Novel noise contributions at low temperatures

light-modified birefringence
- non-thermal, light-induced change of cavity resonance
- different sign for fast and slow axis
- time constant of many hours!

birefringent noise
- even with stabilized laser power
- anticorrelated in fast and slow axis
- correlation length < mode diameter
- so far only observed at 4K, 16K, 124K

global excess noise
- remaining noise when averaging birefringent noise
- exceeds Brownian thermal noise
- correlation length > mode diameter

\[\Delta n_{\text{stat}} \approx 10^{-4} \quad \Delta n_{\text{photo}} \approx 10^{-8} \quad \Delta n_{\text{noise}} \approx 10^{-10} \]
Novel noise contributions at low temperatures

light-modified birefringence

- non-thermal, light-induced change of cavity resonance
- different sign for fast and slow axis
- time constant of many hours!

Possible explanation:
Light is exciting carriers in the AlGaAs / GaAs semiconductor building up electric field along the coating?

linear electro-optic effect?

\[\Delta n \approx r_{41} n_0^3 E \]

- electro-optic tensor component \(r_{41} = 1.5 \, \text{pm/V} \)
- refractive index GaAs \(n_0 \approx 3.48 \)

\[E \approx 3 \, \text{kV/m} \]

small compared to electric field strengths in heterojunctions

\[\Delta n_{\text{stat}} \approx 10^{-4} \quad \Delta n_{\text{photo}} \approx 10^{-8} \]

Measurements at 124 K and 4 K

JILA 6 cm Si cavity at 4 K

PTB 21 cm Si cavity at 124 K

Birefringent noise
1/f excess noise
Non-thermal
Stability at 124 K

- Birefringent noise can be removed with polarization averaging
- The remaining frequency stability \(\sigma_y \approx 4 \times 10^{-17} \) is still higher than predicted thermal noise

Origin of remaining noise:
- Brownian thermal noise?
- \(\varphi(124 \text{ K}) \gg \varphi(300 \text{ K}) \)?
- Other unidentified noise?
Spatial noise correlation on mirror

- Local noise $l_{corr} \ll w$
- Global noise $l_{corr} \gg w$

- Coating Brownian thermal noise
- Birefringent noise
- Cavity temperature fluctuation
- Vibrations
- Thermo-optic noise ($\tau > 1$ s)
- etc.
Measurement of Brownian thermal noise
Brownian thermal noise

Determine upper limit of coating Brownian thermal noise

<table>
<thead>
<tr>
<th>Mode</th>
<th>HG(_{00})</th>
<th>HG(_{01})</th>
<th>HG({00}-HG{01})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaling of mod (\sigma_y)</td>
<td>1</td>
<td>(\sqrt{0.75})</td>
<td>(\sqrt{0.75})</td>
</tr>
<tr>
<td>Predicted noise level</td>
<td>(\text{mod } \sigma_{y00} = 1.0 \times 10^{-17})</td>
<td>(\text{mod } \sigma_{y01} = 0.86 \times 10^{-17})</td>
<td>(\text{mod } \sigma_{y\Delta} = 0.86 \times 10^{-17})</td>
</tr>
<tr>
<td>Measured/calculated</td>
<td>(\text{mod } \sigma_{y00} = 0.97 \times 10^{-17})</td>
<td>(\text{mod } \sigma_{y01} = 0.84 \times 10^{-17})</td>
<td>(\text{mod } \sigma_{y\Delta} = 0.84 \times 10^{-17})</td>
</tr>
</tbody>
</table>

\(\varphi(124 \text{ K}) \approx \varphi(300 \text{ K})\)
Further investigations at room temperature

48 cm ULE cavity with AlGaAs mirror coatings at room temperature.
Sensitivity to external light

\[\Delta \nu \propto \ln(I + I_0) \]

- 450(10) nm, \(\kappa = 1 \)
- 625(7) nm, \(\kappa = 3 \)
- 525(13) nm, \(\kappa = 5 \)
- 890(22) nm, \(\kappa = 6.5 \)

Fused Silica

\(\Delta n(I_{\text{ext}}) \)

38.5 layer pairs

GaAs (115.6 nm)

Al\(_{0.92}\)Ga\(_{0.08}\)As (133.2 nm)

LED
Wavelength-dependent sensitivity

![Graph showing wavelength-dependent sensitivity](image)

- **GaAs** (115.6 nm)
- **Al$_{0.92}$Ga$_{0.08}$As** (133.2 nm)

Delta refractive index ($\Delta n (I_{exr})$) for 38.5 layer pairs.

Fractional sensitivity (arb. u.) for LED.
EMPIR – European Metrology Programme

cryogenic cavities, e.g.
10 mK closed-cycle dilution cryostat
12 kg silicon spacer @ FEMTO-ST

spectral holes

vibration isolation

nanostructured mirrors

large modes
Nanostructured mirrors

Meta-Etalon mirror

- combine grating $R_1 \approx 99.9\%$ with rear dielectric mirror $R_2 \approx 99.9\%$
- thermal noise is mostly determined by silicon grating
- $\sigma_y = 4 \times 10^{-18}$ @ 124 K possible

First results of cavity with one meta-etalon:

- Finesse 12 000
- $R \approx 99.95\%$

S. Dickmann et al. Commun. Phys. 6, 16 (2023)
Large mode area cavities

Larger mode size:
smaller averaged thermal coating noise

<table>
<thead>
<tr>
<th>R_1 (m)</th>
<th>R_2 (plane)</th>
<th>rel. σ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>plane</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>plane</td>
<td>0.84</td>
</tr>
<tr>
<td>5</td>
<td>plane</td>
<td>0.67</td>
</tr>
<tr>
<td>10</td>
<td>plane</td>
<td>0.56</td>
</tr>
<tr>
<td>20</td>
<td>plane</td>
<td>0.47</td>
</tr>
<tr>
<td>50</td>
<td>plane</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Problems:
mirror manufacturing
cavity assembly, tolerances:
mode shifts 1 mm for 10 arcsec deviation

Large modes
at the edge of stability

\[g_2 = 1 - \frac{L}{R_2} \]
\[g_1 = 1 - \frac{L}{R_1} \]
Transportable 124 K Si system

- Cool cavity to 124 K by circulating cold gas between pulse tube cooler and cavity environment
- Lock cavity during transport
Summary

- silicon cavities at 124 K with dielectric coating reach thermal noise limit instability of 4×10^{-17}
- crystalline coatings so far do not provide lower instability

Outlook

- low-noise nanostructured meta-etalons $F \approx 12\,000$
- operation at 4 K
- transportable systems

Funding
Replace the open loop LN2 system by a He-gas cooled, closed-cycle cooling to get a stand-alone and low-maintenance system.

drawbacks:

- LN2 infrastructure needed
- about 400 liters LN2/week needed
- two refills per week (holidays, X-mas ...)

about 10 W cooling power needed
124 K Cryostat

Active shield
Passive shield
Cooled Nitrogen gas feeding lines
Vacuum chamber
Silicon cavity
Ion getter pump

required vibration sensitivity
\[\Delta L/L < 10^{-10} / \text{ms}^2 \]

T. Kessler et al., Nature Phot. 6, 687-692 (2012)

vertical vibration noise
\[S^{1/2} \approx 5 \cdot 10^{-6} \text{ms}^2/\text{Hz}^{1/2} \]

temperature fluctuations
\[\alpha_{Si} (T_0 - 50 \text{ mK}) < 1 \cdot 10^{-9} \text{ K}^{-1} \]

mod \[\sigma_T (K) \]

averaging time (s)

\[10^{-10} \]
\[10^{-8} \]
\[10^{-6} \]
\[10^{-4} \]
\[10^{-2} \]
\[10^0 \]
\[10^1 \]
\[10^2 \]
\[10^3 \]
\[10^4 \]
\[10^5 \]
Long-term drift

Cavity frequencies vs. H-Maser

- Long-term frequency drift
 \[\sim 4 \text{ Hz/day} \quad - 2.4 \times 10^{-19}/\text{s} \]
 about 10^3 times smaller than ultralow expansion materials at room temperature

- less than Hubble constant
 \[H_0 = 2.27 \times 10^{-18}/\text{s} \]

- June 2023:
 -48 \mu Hz/s
 -4.1 Hz/day

492 days in vacuum

- 09.10.2015
- 29.01.2018

- 492 days in vacuum
- 06.05.2016
- 09.10.2015

- 06.05.2016
- 09.10.2015
Parasitic Etalons

light is fed back to cavity mode with parasitic reflectivity \(R_p = r_p^2 \)

field changes mirror reflectivity (as seen from inside the cavity):

\[
E_r = r E_{\text{in}}
\]
to

\[
E_r = (r + tr_p t e^{i\phi})E_{\text{in}}
\]

\[
\delta \phi = t^2 r_p \sin(\phi)
\]

\[
\delta \nu \approx \frac{1}{2} r_p \sin(\phi) \Delta \nu_{\text{FWHM}}
\]

Periodic frequency fluctuation related to air pressure

Parasitic etalons

Model: \(\Delta p \rightarrow \Delta n \rightarrow \Delta \phi \rightarrow \delta \nu \)

\(R_p = 1.2 \times 10^{-6}, L = 0.41 \text{ m} \)

optimized: \(R_p < 5 \times 10^{-8} \)
Thermal-noise Zoo

- **Brownian (thermal) noise:** internal friction in coating, mirror, spacer
- **Thermo-elastic:** thermal expansion from temperature fluctuations
- **Thermo-refractive:** refractive index change from temperature fluctuations
- many more ...

M. L. Gorodetsky

Thermal noise $S_x(f)$ for fused silica mirror with SiO$_2$ / Ta$_2$O$_5$ coating at 300 K
$\lambda = 1542$ nm, $w = 400$ µm
Evaluation of technical noise

All technical noise sources are suppressed to below 10^{-17}

- residual amplitude modulation (RAM)
- vibrations with additional low frequency servo loop
-
All thermal noise contributions are proportional to mechanical loss factor f:

- 0.6 µW
- 0.8 µW

Unlock for 20 min

200 kHz
Transient response – power dependence

So far no simple explanation
- semiconductor properties?
- electric fields from internal photoeffect?
- electrooptic/photorefractive effect?

Further investigations necessary:
- temperature
- spatial correlations
- relation to noise
• Ultrahigh reflectivity: combine grating $R_1 \approx 99.9\%$ + rear dielectric mirror $R_2 \approx 99.9\%$

• Thermal noise mostly determined by silicon grating - $\sigma_y = 4 \times 10^{-18}$ @ 124 K possible

Goals:

Stand-alone system (towards field use)

Reduce impact of by vibrations by additional feedback on AVI and feedforward technique (WP2)
He-based closed cycle cryostat

- Cryo system from TransMIT arrived at PTB
- Check cooling performance and vibration level on test system.
- Replace LN2-based cooling system of Si5 (124 K, 21 cm silicon, AlGaAs coatings)
Crystaline AlGaAs / GaAs multilayer

- Low optical absorption and scatter (A+S < 16 ppm)
- Lower mechanical loss than dielectric coatings

Reduced Brownian Thermal Noise

\[
\phi_{\text{SiO}_2/\text{Ta}_2\text{O}_5} \approx 5 \times 10^{-4}
\]

\[
\phi_{\text{AlGaAs}} \approx 2.5 \times 10^{-5}
\]

F = 400 000
\(\delta \nu = 1.8 \text{ kHz}\)

F = 290 000
\(\delta \nu = 8.6 \text{ kHz}\)

PTB (21 cm)
124 K

JILA (6 cm)
4 K
Birefringent noise – power dependence

![Graph showing birefringent noise dependence on power for different powers and frequencies.](image)

Equation:

- $P_{\text{intra}} = 0.37W$
- $1/f^{1.5}$
- $P_{\text{intra}} = 2.02W$
- $P_{\text{intra}} = 0.21W$
- $P_{\text{intra}} = 0.09W$
- $1/f$
- $1/f^{2.5}$

References:

- D. Kedar et al., Optica 10, 464 (2023)
 https://doi.org/10.1364/OPTICA.479462
- J. Yu, et. al., arXiv:2210.15671 [physics.optics]
 https://doi.org/10.48550/ARXIV.2210.15671
The excess noise:

- Long correlation length
- $1/f$ slope in PSD
- Independent of optical power
Change of splitting by intracavity power

\[\Delta n (l_{\text{cavity}}) \]

\[\Delta n = \frac{38.5 \text{ layer pairs}}{w_0 = 0.5 \text{ mm}} \]

GaAs (115.6 nm)

Al_{0.92}Ga_{0.08}As (133.2 nm)

\[w_0 = 0.5 \text{ mm} \]

\[\Delta n \propto \ln(l + l_0) \]

\[\Delta n \propto l^{0.4} \]