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Until long-term frequency stable optical references [1] reach the robustness needed to operate as sig-
nal sources free from interruptions, hydrogen masers (HM) remain the best available option for a
flywheel oscillator that can bridge both accidental and intentional gaps in the operation of an optical
frequency standard. NICT’s approach of operating its strontium optical lattice clock NICT-Sr1 only
intermittently [2] is designed around the stability of the hydrogen masers operated for the generation
of Japan Standard Time (JST) [3].

From October 29, 2021 to March 30, 2023, NICT-Sr1 performed 78 frequency evaluations of hydro-
gen maser JST-HM14, typically to a statistical fractional uncertainty of 2-3x107, Isolating each
evaluation from the full dataset and comparing it to an interpolation of the remainder yields prediction
errors with a standard deviation of only 5.0 x 10~%¢ (Fig. 1), in good agreement with the statistical
uncertainty of 5.6 x 10~1¢ calculated using our previously reported stochastic HM model [4]. The
same model yields an uncertainty of 1x107° or below when extrapolating the HM behavior to the
next weekly clock measurement. These uncertainties support that intermittent operation of a precise
optical clock, combined with a well-performing hydrogen maser acting as a predictable flywheel os-
cillator, is sufficient to generate a time scale with excursions at or less than 1 ns over several weeks.
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