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Optical frequency standards (OFS) under development in many institutions worldwide have demon-
strated impressive progress in terms of accuracy and stability [1-5], surpassing the performances of 
atomic fountain microwave frequency standards by two orders of magnitude. In the frame of the 
redefinition of the second in the international system of units (SI) [6], several OFS currently consid-
ered as secondary representations of the SI second already contribute to the steering of International 
Atomic Time (TAI), calculated monthly by the Bureau International des Poids et Mesures (BIPM). 
Local time scales maintained by National Metrology Institutes will also benefit in the near future 
from the accuracy and stability of OFS with an expected time offset from Coordinated Universal 
Time (UTC) maintained in the 100 ps range or lower [7-10]. 

In this paper, we will present real-time optically steered timescales generated at the same time at OP 
and NPL. In this experiment, performed during the Robust Optical Clocks for International Time-
scales (ROCIT) project funded by the European Metrology Programme For Innovation and Research 
(EMPIR), independent experimental time scales UTCx(k) were generated for one month in both la-
boratories in parallel to the local UTC(k) time scales. The UTCx(k) time scales were based on hydro-
gen masers whose frequency was calibrated by the local OFS (SYRTE-SrB and SYRTE-Sr2 optical 
lattice clocks [11] at OP, NPL-Sr1 [12] and NPL-Yb+E3 [13] OFS at NPL) via frequency combs. 
From these frequency calibrations, steering corrections were updated hourly via frequency offset gen-
erators fed by the hydrogen masers, to better compensate for the real time maser frequency fluctua-
tions. After a detailed description of the experimental chains, we will present the implemented algo-
rithms for outlier filtering and frequency steering estimations. We will then analyse the performance 
of the experimental timescales based on local comparison against the local UTC(k) and remote com-
parisons performed via UTC and using the GPS Precise Point Positioning (PPP) technique, before 
presenting strategies for improvement. We will show that the two optically steered time scales re-
mained less than 4 ns away one from each other, which is better than the corresponding UTC(k) over 
the same period. To our knowledge, this is the first-ever comparison of two independent 'optical time 
scale' prototypes, and the results demonstrate the capacity of optical clocks to produce operational 
timescales. 
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