Stochastic quantum thermodynamics of clocks

Gerard Milburn¹ and Michael Kewming².

¹Centre for Engineered Quantum Systems, The University of Queensland

² Trinity College Dublin.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

2 Quantum clocks & and measurement noise.

3 Experiment using a superconducting circuit qubit.

Quantum thermodynamic uncertainty relations.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

周 ト イ ヨ ト イ ヨ ト

Thermodynamics of clocks.

All clocks, classical and quantum, are irreversible systems pushed away from equilibrium.

A (1) × A (2) × A (2) ×

Thermodynamics of clocks.

All clocks, classical and quantum, are irreversible systems pushed away from equilibrium.

Free energy:

$$\Delta F = \Delta E - T \Delta S$$

(1日) (1日) (1日)

Thermodynamics of clocks.

All clocks, classical and quantum, are irreversible systems pushed away from equilibrium.

Free energy:

$$\Delta F = \Delta E - T \Delta S$$

 $\Delta F > 0$, do work to increase *E* Make measurements to decrease *S*

A (10) × (10) × (10) ×

All clocks, classical and quantum, are irreversible systems pushed away from equilibrium.

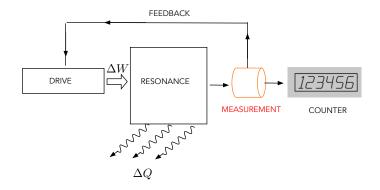
Free energy:

$$\Delta F = \Delta E - T \Delta S$$

$\Delta F > 0$, do work to increase *E* Make measurements to decrease *S*

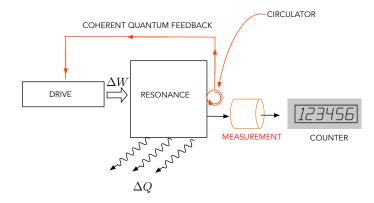
See GJM The thermodynamics of clocks, Contemporary Physics, 2020.

Thermodynamics of clocks.

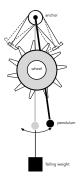


イロト イポト イヨト イヨト

Thermodynamics of quantum clocks.



Work driven clocks and limit cycles .

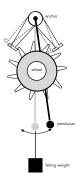


A (10) × (10) × (10) ×

Pendulum clock: a driven <u>non linear</u> oscillator in a non equilibrium steady state.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

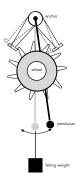
Work driven clocks and limit cycles .



Pendulum clock: a driven <u>non linear</u> oscillator in a <u>non equilibrium</u> steady state. The steady state is a *limit cycle*, a one dimensional attractor.

伺 ト イ ヨ ト イ ヨ ト

Work driven clocks and limit cycles .



Pendulum clock: a driven <u>non linear</u> oscillator in a <u>non equilibrium</u> steady state. The steady state is a *limit cycle*, a one dimensional

attractor.

See GJM The thermodynamics of clocks, Contemporary Physics 2020.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

Work driven clocks and limit cycles .

Equations of motion:

$$\dot{x} = y$$

thermal noise
 $\dot{y} = -x - \Gamma y + K(x, y) + \widetilde{\eta(t)}$

イロト イポト イヨト イヨト

Work driven clocks and limit cycles .

Equations of motion:

$$\dot{x} = y$$

thermal noise
 $\dot{y} = -x - \Gamma y + K(x, y) + \widetilde{\eta(t)}$

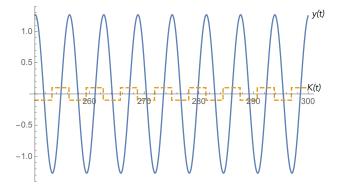
Adiabatic elimination of the ratchet dynamics to define the 'kick function'

$$K(\mathbf{x}, \mathbf{y}) = -\mu \operatorname{sign}(\sin \psi_0 \ \mathbf{x} - \cos \psi_0 \ \mathbf{y})$$

 $\psi_{\rm 0}$ is fixed by the design of the escapement and μ has units of frequency.

Work driven clocks and limit cycles .

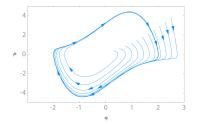
On the limit cycle (with no noise):



Angular momentum (solid) and the impulse function (dashed) versus time for the kicked pendulum with $\sin \psi_0 = 0.1 \ \Gamma = 0.1 \ \mu = 0.1$.

Phase reduction.

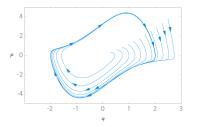
periodic clocks exhibit self sustained oscillations known as *limit cycles* or *relaxation oscillations*. A limit cycle is a *one-dimensional attractor*.



• • = • • = •

Phase reduction.

periodic clocks exhibit self sustained oscillations known as *limit cycles* or *relaxation oscillations*. A limit cycle is a *one-dimensional attractor*.



Phase function $\theta(t) = \Theta(q(t), p(t))$, with $0 \le \theta(t) < 2\pi$ determines clock period.

- 白戸 ト - 三 ト - - 三 ト

see Sacré & Sepulchre, IEEE CONTROL SYSTEMS MAGAZINE, APRIL 2014

Normal form for Hopf bifurcation:

$$\dot{x} = [\mu x - \omega y - (x^2 + y^2)y]dt$$

$$\dot{y} = [\omega x + \mu y - (x + y^2)x]dt + \sigma dW(t)$$

 $\boldsymbol{\mu}$ is the amplification rate.

イロト イポト イヨト イヨト

Normal form for Hopf bifurcation:

$$\dot{x} = [\mu x - \omega y - (x^2 + y^2)y]dt$$

$$\dot{y} = [\omega x + \mu y - (x + y^2)x]dt + \sigma dW(t)$$

 μ is the amplification rate.

limit cycle:
$$x(t) = \sqrt{\mu} \cos(\theta(t)), \quad y(t) = \sqrt{\mu} \sin(\theta(t)).$$

$$d\theta(t) = \omega + \frac{\sigma}{\mu} dW(t)$$

the larger the limit cycle the slower the phase noise.

See Aminzare et al. IEEE 58th Conference on Decision and Control (CDC), 2019.

Phase reduction and noise.

First passage time distribution: probability for time *T* taken for phase to change by 2π ... the period is a random variable.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

・ロト ・ 一下・ ・ ヨト・

First passage time distribution: probability for time *T* taken for phase to change by 2π ... the period is a random variable.

Wald or Inverse Gaussian distribution of periods.

$$W(T, \alpha, \lambda) = \sqrt{\frac{\lambda}{2\pi}} T^{-3/2} \exp\left[-\frac{\lambda}{2\alpha^2 T} (T-\alpha)^2\right] \quad t \ge 0.$$

イロト イポト イモト イモト

where α, λ are positive real parameters (λ is called the spread parameter).

First passage time distribution: probability for time T taken for phase to change by 2π ... the period is a random variable.

Wald or Inverse Gaussian distribution of periods.

$$W(T, \alpha, \lambda) = \sqrt{\frac{\lambda}{2\pi}} T^{-3/2} \exp\left[-\frac{\lambda}{2\alpha^2 T} (T-\alpha)^2\right] \quad t \ge 0.$$

where α , λ are positive real parameters (λ is called the spread parameter).

$$\overline{T} = \alpha$$
$$\overline{\Delta T^2} = \frac{\alpha^3}{\lambda}$$

イロト イポト イモト イモト

Normal form limit cycle:

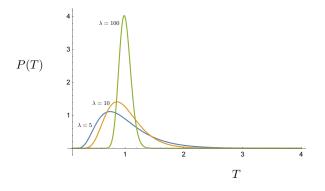
$$\overline{T} = rac{2\pi}{\omega}$$
 $\overline{\Delta T^2} = rac{2\pi\sigma^2}{\omega^3\mu}$

fluctuations in period get smaller as the limit cycle gets bigger.

More work, more heat dissipated, better the clock (See Erker et al. 2017).

A (10) × A (10) × A (10) ×

Noise and fluctuations in period.



Mean period $\overline{T} = 1$ and three different values of the spread parameter, λ . Increasing λ is decreasing noise.

Quantum clocks & and measurement noise.

Quantum clocks & and measurement noise.

ヘロト 人間 トイヨト イヨト

E 99€

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

Example: the laser.

A laser is a quantum clock, if you add a counter.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

Example: the laser.

A laser is a quantum clock, if you add a counter.

Dissipative nonlinear oscillator (Wiseman, PRA, 60, 4083).

$$\dot{\rho} = Gn_{s}\mathcal{D}[a^{\dagger}] \left(\mathcal{A}[a^{\dagger}] + n_{s} \right)^{-1} \rho + \kappa \mathcal{D}[a]\rho$$

$$\mathcal{D}[a]
ho = a
ho a^{\dagger} - rac{1}{2}(a^{\dagger}a
ho +
ho a^{\dagger}a) \quad \mathcal{A}[a]
ho = rac{1}{2}(a^{\dagger}a
ho +
ho a^{\dagger}a)$$

G is the small signal gain, n_s saturation photon number and κ is the cavity decay rate.

Equivalent classical model

Dynamics of the average field $\alpha(t) = tr(a\rho(t))$

$$\dot{\alpha} = -\frac{\kappa\alpha}{2} \left(1 - \frac{Gn_s}{\kappa(|\alpha|^2 + n_s)} \right)$$

Well above threshold this is similar to the van der Pol oscillator in a rotating frame.

There are two fixed points $\alpha_0 = 0$ and $|\alpha_0|^2 = Gn_s/\kappa$ for $G >> \kappa$. The second solution is the above threshold limit-cycle solution.

Quantum clocks & and measurement noise.

Quantum model

What to measure?

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

イロト イポト イヨト イヨト

Quantum model

What to measure?

Photon counting ? a Poisson distribution of counts. No oscillatory clock signal.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

э

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

Quantum model

What to measure?

Photon counting ? a Poisson distribution of counts. No oscillatory clock signal.

No point in measuring output intensity.

Measure field amplitude by heterodyne detection to get a clock signal.

Measure field amplitude by heterodyne detection to get a clock signal.

measured current:

$$J_{het}(t) dt = \kappa \langle a(t)
angle_c dt + \sqrt{rac{\kappa}{\eta}} dW(t)$$

where $0 < \eta \le 1$ is the photo-detector quantum efficiency, dW(t) is a complex valued Weiner process and $\langle a(t) \rangle_c$ is the mean field amplitude conditioned on the entire history of the observed current.

A (10) × (10)

Conditional quantum dynamics:

$$d
ho_{c} = \mathcal{L}
ho_{c}dt + \sqrt{rac{\eta}{\kappa}}\mathcal{H}[a]
ho_{c}dW^{*}$$

 dW^* , complex Weiner increment, $\mathcal{H}[A]$ is defined by

$$\mathcal{H}[\mathcal{A}]\rho = \mathcal{A}\rho + \rho \mathcal{A} - \mathrm{tr}[\mathcal{A}\rho + \rho \mathcal{A}]\rho$$

- 4 個 ト 4 ヨ ト 4 ヨ ト -

is nonlinear...as expected.

Wiseman and Milburn "Quantum Measurement and Control, CUP, 2011

Well above threshold (on the classical limit cycle)

$$\dot{
ho}_{c} = \Gamma \mathcal{D}[\boldsymbol{a}^{\dagger}\boldsymbol{a}] + \sqrt{\eta}\mathcal{H}[\boldsymbol{a}]
ho_{c}\boldsymbol{dW}^{*}$$

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

Well above threshold (on the classical limit cycle)

$$\dot{
ho}_{c} = \Gamma \mathcal{D}[\boldsymbol{a}^{\dagger}\boldsymbol{a}] + \sqrt{\eta}\mathcal{H}[\boldsymbol{a}]
ho_{c}\boldsymbol{dW}^{*}$$

Writing $\rho_c(t)$ as a mixture of coherent states as

$$\rho_{c}(t) = \int d^{2}\alpha P_{c}(\alpha, t) |\alpha\rangle \langle \alpha |$$

define $\alpha = re^{i\phi}$

$$d\phi_c = \sqrt{\Gamma} dW$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

non-thermal phase diffusion rate $\Gamma = \kappa/2\bar{n}$.

Well above threshold (on the classical limit cycle)

$$\dot{
ho}_{c} = \Gamma \mathcal{D}[\boldsymbol{a}^{\dagger}\boldsymbol{a}] + \sqrt{\eta}\mathcal{H}[\boldsymbol{a}]
ho_{c}\boldsymbol{dW}^{*}$$

Writing $\rho_c(t)$ as a mixture of coherent states as

$$\rho_{c}(t) = \int d^{2}\alpha P_{c}(\alpha, t) |\alpha\rangle \langle \alpha |$$

define $\alpha = re^{i\phi}$

$$d\phi_c = \sqrt{\Gamma} dW$$

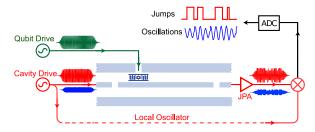
non-thermal phase diffusion rate $\Gamma = \kappa/2\bar{n}$. Energy dissipated by cavity loss is $\propto \kappa \bar{n}$ Experiment using a superconducting circuit qubit.

Experiment using a superconducting circuit qubit.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

э

Simple model:



- Transmon qubit dispersively coupled to a superconducting microwave cavity.
- Cavity and qubit are driven coherently.
- The output field is subject to a homodyne measurement.

$$d\rho_{c} = \underbrace{-iE[a + a^{\dagger}, \rho_{c}]dt}_{-i\chi[a^{\dagger} a\sigma_{z}, \rho_{c}]dt} \underbrace{\operatorname{qubit drive}}_{i\Omega[\sigma_{x}, \rho_{c}]dt} \\ +\sqrt{\eta\kappa}\mathcal{H}[a]\rho_{c}dW(t).$$

 χ : dispersive coupling. γ : qubit amplitude damping rate, κ : cavity damping rate, η photodetector, efficiency

$$\mathcal{D}[A]$$
 and $\mathcal{H}[A]$ are superoperators:
 $\mathcal{D}[A]\rho = A\rho A^{\dagger} - \frac{1}{2}(A^{\dagger}A\rho + \rho A^{\dagger}A)$ and
 $\mathcal{H}[A]\rho = A\rho + \rho A^{\dagger} - \operatorname{tr}(A\rho + \rho A^{\dagger})\rho.$

Adiabatically eliminate the cavity field. conditional master equation for the reduced state of the qubit (ρ_{σ}) only:

$$d\rho_{\sigma} = -i[H_{\sigma}, \rho_{\sigma}]dt + \gamma \mathcal{D}[\sigma_{-}]\rho_{\sigma}dt + \Gamma \mathcal{D}[\sigma_{z}]\rho_{\sigma}dt - \sqrt{\Gamma}\mathcal{H}[\sigma_{z}]\rho_{\sigma}dW(t).$$

Here $H_{\sigma} = \Omega \sigma_x + \Delta \sigma_z$

$$\frac{\Gamma}{\kappa} = 4 \left(\frac{\chi}{\kappa}\right)^2 n_0 \text{ measurement dephasing rate}$$
$$\frac{\Delta}{\kappa} = \left(\frac{\chi}{\kappa}\right) n_0 \text{ effective Stark shift}$$

A D > A B > A B > A B >

$$n = |lpha_0|^2 = 4|E|^2/\kappa$$

 Γ can be tuned by varying *E*.

Bloch sphere conditional dynamics.

$$dX = -2\Delta Y dt - \gamma_2 X dt$$

$$dY = 2\Delta X dt - 2\Omega Z dt - \gamma_2 Y dt$$

$$dZ = 2\Omega Y dt - \gamma (1+Z) dt - 2\sqrt{\Gamma}(1-Z^2) dW$$

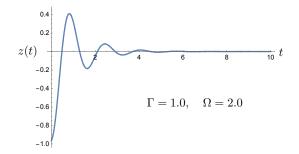
where $\gamma_2 = \gamma/2 + 2\Gamma$ is the transverse decay rate of the conditional polarization.

Spontaneous emission rate, $\gamma \ll 1$, so $\gamma_2 \approx 2\Gamma$.

The unconditional dynamics is obtained by averaging over the noise. $\overline{dW} = 0$.

Unconditonal dynamics:

underdamped : $\Omega > \Gamma/2$.



→ Ξ →

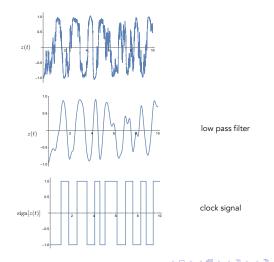
Unconditonal dynamics:

Overdamped : $\Omega < \Gamma/2$.

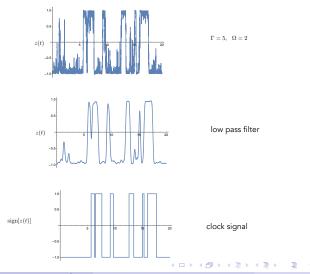


b 4 E b 4 E b

Conditonal dynamics: underdamped : $\Omega > \Gamma/2$.



Conditonal dynamics: over-damped : $\Omega < \Gamma/2$.



Conditonal dynamics: under-damped : $\Omega > \Gamma/2$. Coherent with phase noise.

Conditonal dynamics: under-damped : $\Omega > \Gamma/2$. Coherent with phase noise.

Conditonal dynamics: over-damped : $\Omega < \Gamma/2$. Quantum-jump regime ... a non periodic clock.

- Conditonal dynamics: under-damped : $\Omega > \Gamma/2$. Coherent with phase noise.
- Conditonal dynamics: over-damped : $\Omega < \Gamma/2$. Quantum-jump regime ... a non periodic clock.
- In both cases, the noise is quantum not thermal.
- It arises from measurement itself.

Quality measure:

$$N_{osc} = \frac{(\mathrm{E}[T])^2}{\mathrm{Var}[T]}$$

Simulate quantum stochastic master equation:

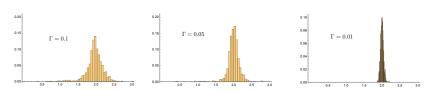
Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

э

Quality measure:

$$N_{osc} = \frac{(\mathrm{E}[T])^2}{\mathrm{Var}[T]}$$

Simulate quantum stochastic master equation:

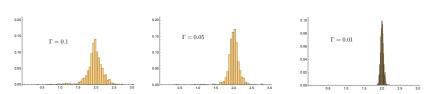


 $\overline{T} = 2$

Quality measure:

$$N_{osc} = \frac{(\mathrm{E}[T])^2}{\mathrm{Var}[T]}$$

Simulate quantum stochastic master equation:



 $\overline{T} = 2$

Decreasing measurement strength makes a better clock.

Linearise noise on unconditional steady state:

$$P(T) = \sqrt{\frac{\pi}{\Gamma T^3}} \exp\left[-\frac{(\pi - \Omega T)^2}{\Gamma T}\right]$$
$$E[T] = \frac{\pi}{\Omega}, \quad Var[T] = \frac{\pi\Gamma}{2\Omega^3}$$

.

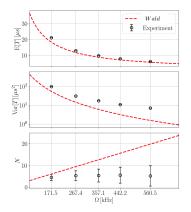
イロト (周) (ヨ) (ヨ) (ヨ) ヨー つくつ

Define

$$N_{osc} = rac{(\mathrm{E}[T])^2}{\mathrm{Var}[T]} = 2\pi \left(rac{\Omega}{\Gamma}
ight) \,.$$

Experiment using a superconducting circuit qubit.

Experiment.



イロト イロト イヨト イヨト

2

Simulations Nosc:

Г	variance	numerical	Wald
0.1	0.070	56	98.7
0.05	0.033	101	197
0.01	0.039	987	1024
0.001	0.002	1861	1974

э

better match for weak measurement.

Quantum thermodynamic uncertainty relations.

Quantum thermodynamic uncertainty relations.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

イロト イタト イヨト イヨト

э

Quantum parameter estimation for weak continuous measurement.

Gerard Milburn¹ and Michael Kewming². (20Stochastic quantum thermodynamics of cl

Quantum parameter estimation for weak continuous measurement.

Period estimation is a First Passage Time problem.

э

Quantum parameter estimation for weak continuous measurement.

Period estimation is a First Passage Time problem.

Kewming, et al. *First Passage Times for Continuous Quantum Measurement Currents*, arXiv:2308.07810

Quantum parameter estimation for weak continuous measurement.

Period estimation is a First Passage Time problem.

Kewming, et al. *First Passage Times for Continuous Quantum Measurement Currents*, arXiv:2308.07810

Quantum thermodynamic uncertainty relations.

$$\frac{\operatorname{Var}[T]}{\left(\partial_{\theta} \operatorname{E}_{\theta}[T]|_{\theta=0}\right)^{2}} \geq \frac{1}{I_{Q}(0)} \,.$$

 θ , estimated parameter, $I_Q(0) = I_Q(\theta = 0)$ is the quantum Fisher information (QFI).

$$\frac{\operatorname{Var}[T]}{\left(\partial_{\theta} \operatorname{E}_{\theta}[T]|_{\theta=0}\right)^{2}} \geq \frac{1}{I_{Q}(0)}.$$

 θ , estimated parameter, $I_Q(0) = I_Q(\theta = 0)$ is the quantum Fisher information (QFI).

$$I_Q(0) = \mathrm{E}[T](\overbrace{\mathcal{N}}^{classical} + \overbrace{\mathcal{Q}}^{quantum}),$$

where

$$\mathcal{N}=\Gamma\,,\qquad \mathcal{Q}=\frac{4\Omega^2}{\Gamma}\,,$$

See Van Vu et al. Thermodynamics of Precision in Markovian Open Quantum Dynamics, Phys. Rev. Lett. (2022).

Why does the Fisher information have a quantum contribution?

э

Why does the Fisher information have a quantum contribution?

Quantum probabilities are given by the Born rule

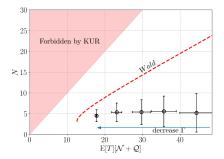
$$P(x| heta) = |\psi_{ heta}(x)|^2$$

Need amplitude and phase to determine statistical distance. See Braunstein, Caves, GJM Annals of physics (1996).

・ロト ・ 一下・ ・ ヨト・

Quantum thermodynamic uncertainty relations.

Experiment.

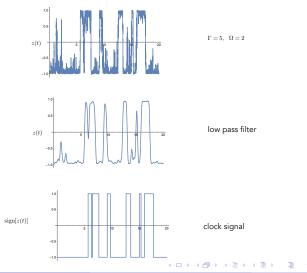


イロト 不得 トイヨト 不足下

2

Quantum jump regime.

Conditonal dynamics: over-damped : $\Omega < \Gamma/2$.



Quantum jump regime.

FPT distribution:

$$P(T) = \mu^2 T e^{-\mu T} \,,$$

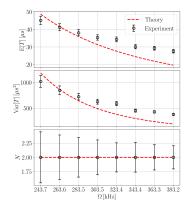
$$\mu = \Gamma \Omega^2 / (\Gamma^2 + \Delta^2)$$

$$E[T] = \frac{2}{\mu}, \quad Var[T] = \frac{2}{\mu^2}, \quad N_{jump} = 2.$$

イロト イロト イヨト イヨト

э

Quantum jump regime: experiment



イロト イヨト イヨト イヨト

Conclusions.

- All clocks are dissipative systems pushed away from thermal equilibrium by work or measurement.
- At low temperature, weak continuous measurement plays a special role to extract a clock signal.
- At low temperature, quantum noise (spontaneous emission, tunnelling, measurement back action) limits clock accuracy.

- Use coherent quantum feedback.
- Engineer quantum noise for better clocks

(eg Wiseman, et al. The Heisenberg limit for laser coherence, Nat. Phys. (2021).

Acknowledgements.

Arkady Fedorov, UQ

Eric He, UQ

Michael Kewming (TCD)

Adil Gangat, NTT (USA)

Pete Evans (UQ)

イロト イロト イヨト イヨト

э