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Thermodynamics of clocks.

Thermodynamics of clocks.

All clocks, classical and quantum, are irreversible systems
pushed away from equilibrium.

Free energy:
∆F = ∆E − T∆S

∆F > 0, do work to increase E
Make measurements to decrease S

See GJM The thermodynamics of clocks, Contemporary Physics, 2020.
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Thermodynamics of clocks.

Thermodynamics of clocks.
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Thermodynamics of clocks.

Thermodynamics of quantum clocks.
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Thermodynamics of clocks.

Work driven clocks and limit cycles .

anchor

wheel

pendulum

falling weight

Pendulum clock: a driven non linear oscillator in a
non equilibrium steady state.

The steady state is a limit cycle, a one dimensional
attractor.
See GJM The thermodynamics of clocks, Contemporary Physics 2020.
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Thermodynamics of clocks.

Work driven clocks and limit cycles .

Equations of motion:

ẋ = y

ẏ = −x − Γy + K (x , y) +

thermal noise︷︸︸︷
η(t)

Adiabatic elimination of the ratchet dynamics to define the
’kick function’

K (x , y) = −µ sign(sinψ0 x − cosψ0 y)

ψ0 is fixed by the design of the escapement and µ has
units of frequency.
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Thermodynamics of clocks.

Work driven clocks and limit cycles .

On the limit cycle (with no noise):
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Angular momentum (solid) and the impulse function
(dashed) versus time for the kicked pendulum with
sinψ0 = 0.1 Γ = 0.1 µ = 0.1.
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Thermodynamics of clocks.

Phase reduction.

periodic clocks exhibit self sustained oscillations known as
limit cycles or relaxation oscillations. A limit cycle is a
one-dimensional attractor.

q

p

Phase function θ(t) = Θ(q(t),p(t)), with 0 ≤ θ(t) < 2π
determines clock period.

see Sacré & Sepulchre, IEEE CONTROL SYSTEMS MAGAZINE, APRIL 2014
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Thermodynamics of clocks.

Phase reduction and noise.

Normal form for Hopf bifurcation:

ẋ = [µx − ωy − (x2 + y2)y ]dt
ẏ = [ωx + µy − (x + y2)x ]dt + σdW (t)

µ is the amplification rate.

limit cycle: x(t) =
√
µ cos(θ(t)), y(t) =

√
µ sin(θ(t)).

dθ(t) = ω +
σ

µ
dW (t)

the larger the limit cycle the slower the phase noise.

See Aminzare et al. IEEE 58th Conference on Decision and Control (CDC), 2019.
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Thermodynamics of clocks.

Phase reduction and noise.

First passage time distribution: probability for time T taken
for phase to change by 2π... the period is a random
variable.

Wald or Inverse Gaussian distribution of periods.

W (T , α, λ) =

√
λ

2π
T−3/2 exp

[
− λ

2α2T
(T − α)2

]
t ≥ 0.

where α, λ are positive real parameters (λ is called the
spread parameter).

T = α

∆T 2 =
α3

λ
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Thermodynamics of clocks.

Phase reduction and noise.

Normal form limit cycle:

T =
2π
ω

∆T 2 =
2πσ2

ω3µ

fluctuations in period get smaller as the limit cycle gets
bigger.

More work, more heat dissipated, better the clock (See
Erker et al. 2017).
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Thermodynamics of clocks.

Noise and fluctuations in period.

1 2 3 4

1
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P (T )

T
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� = 100

Mean period T̄ = 1 and three different values of the
spread parameter, λ. Increasing λ is decreasing noise.
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Quantum clocks & and measurement noise.

Quantum clocks & and measurement noise.
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Quantum clocks & and measurement noise.

Example: the laser.

A laser is a quantum clock, if you add a counter.

Dissipative nonlinear oscillator (Wiseman,PRA, 60, 4083).

ρ̇ = GnsD[a†]

gain sat.︷ ︸︸ ︷(
A[a†] + ns

)−1
ρ+ κD[a]ρ

D[a]ρ = aρa† − 1
2
(a†aρ+ ρa†a) A[a]ρ =

1
2
(a†aρ+ ρa†a)

G is the small signal gain, ns saturation photon number
and κ is the cavity decay rate.
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Quantum clocks & and measurement noise.

Equivalent classical model

Dynamics of the average field α(t) = tr(aρ(t))

α̇ = −κα
2

(
1 − Gns

κ(|α|2 + ns)

)
Well above threshold this is similar to the van der Pol
oscillator in a rotating frame.

There are two fixed points α0 = 0 and |α0|2 = Gns/κ for
G >> κ. The second solution is the above threshold
limit-cycle solution.
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Quantum clocks & and measurement noise.

Quantum model

What to measure?

Photon counting ? .... a Poisson distribution of counts. No
oscillatory clock signal.

No point in measuring output intensity.
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Quantum clocks & and measurement noise.

Quantum model: measurement noise

Measure field amplitude by heterodyne detection to get a
clock signal.

measured current:

Jhet(t)dt = κ⟨a(t)⟩cdt +
√
κ

η
dW (t)

where 0 < η ≤ 1 is the photo-detector quantum efficiency,
dW (t) is a complex valued Weiner process and ⟨a(t)⟩c is
the mean field amplitude conditioned on the entire history
of the observed current.
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Quantum clocks & and measurement noise.

Quantum model: measurement noise

Conditional quantum dynamics:

dρc = Lρcdt +
√
η

κ
H[a]ρcdW ∗

dW ∗, complex Weiner increment, H[A] is defined by

H[A]ρ = Aρ+ ρA − tr[Aρ+ ρA]ρ

is nonlinear...as expected.
Wiseman and Milburn "Quantum Measurement and Control, CUP, 2011
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Quantum clocks & and measurement noise.

Quantum model: measurement noise

Well above threshold ( on the classical limit cycle)

ρ̇c = ΓD[a†a] +
√
ηH[a]ρcdW ∗

Writing ρc(t) as a mixture of coherent states as

ρc(t) =
∫

d2αPc(α, t)|α⟩⟨α|

define α = reiϕ

dϕc =
√
ΓdW

non-thermal phase diffusion rate Γ = κ/2n̄.
Energy dissipated by cavity loss is ∝ κn̄
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Experiment using a superconducting circuit qubit.

Experiment using a superconducting circuit qubit.
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Simple model:

Transmon qubit dispersively coupled to a superconducting
microwave cavity.
Cavity and qubit are driven coherently.
The output field is subject to a homodyne measurement.
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

dρc =

cavity drive︷ ︸︸ ︷
−iE [a + a†, ρc]dt −

qubit drive︷ ︸︸ ︷
iΩ[σx , ρc]dt

−iχ[a†aσz , ρc]dt + γD[σ−]ρc + κD[a]ρcdt
+
√
ηκH[a]ρcdW (t).

χ: dispersive coupling.
γ: qubit amplitude damping rate, κ: cavity damping rate,
η photodetector, efficiency

D[A] and H[A] are superoperators:
D[A]ρ = AρA† − 1

2(A
†Aρ+ ρA†A) and

H[A]ρ = Aρ+ ρA† − tr(Aρ+ ρA†)ρ.
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Adiabatically eliminate the cavity field.
conditional master equation for the reduced state of the
qubit (ρσ) only:

dρσ = −i[Hσ, ρσ]dt + γD[σ−]ρσdt

+ ΓD[σz ]ρσdt −
√
ΓH[σz ]ρσdW (t).

Here Hσ = Ωσx +∆σz

Γ

κ
= 4

(χ
κ

)2
n0 measurement dephasing rate

∆

κ
=

(χ
κ

)
n0 effective Stark shift

n = |α0|2 = 4|E |2/κ
Γ can be tuned by varying E .
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Bloch sphere conditional dynamics.

dX = −2∆Ydt − γ2Xdt
dY = 2∆Xdt − 2ΩZdt − γ2Ydt
dZ = 2ΩYdt − γ(1 + Z )dt − 2

√
Γ(1 − Z 2)dW

where γ2 = γ/2 + 2Γ is the transverse decay rate of the
conditional polarization.

Spontaneous emission rate, γ << 1, so γ2 ≈ 2Γ.

The unconditional dynamics is obtained by averaging over
the noise. dW = 0.
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Unconditonal dynamics:

underdamped : Ω > Γ/2.
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� = 1.0, ⌦ = 2.0
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Unconditonal dynamics:

Overdamped : Ω < Γ/2.
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Conditonal dynamics: underdamped : Ω > Γ/2.

z(t)
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Conditonal dynamics: over-damped : Ω < Γ/2.
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clock signal
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Conditonal dynamics: under-damped : Ω > Γ/2.

Coherent with phase noise.

Conditonal dynamics: over-damped : Ω < Γ/2.

Quantum-jump regime ... a non periodic clock.

In both cases, the noise is quantum not thermal.

It arises from measurement itself.
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Quality measure:

Nosc =
(E[T ])2

Var[T ]

Simulate quantum stochastic master equation:

T̄ = 2
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Decreasing measurement strength makes a better clock.

Gerard Milburn1 and Michael Kewming2. (2023)Stochastic quantum thermodynamics of clocks 31 / 44



Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Quality measure:

Nosc =
(E[T ])2

Var[T ]

Simulate quantum stochastic master equation:

T̄ = 2

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

� = 0.01

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

� = 0.1

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

� = 0.05

Decreasing measurement strength makes a better clock.

Gerard Milburn1 and Michael Kewming2. (2023)Stochastic quantum thermodynamics of clocks 31 / 44



Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Quality measure:

Nosc =
(E[T ])2

Var[T ]

Simulate quantum stochastic master equation:

T̄ = 2

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

� = 0.01

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

� = 0.1

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

� = 0.05

Decreasing measurement strength makes a better clock.

Gerard Milburn1 and Michael Kewming2. (2023)Stochastic quantum thermodynamics of clocks 31 / 44



Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Linearise noise on unconditional steady state:

P(T ) =

√
π

ΓT 3 exp

[
−(π − ΩT )2

ΓT

]
.

E[T ] =
π

Ω
, Var[T ] =

πΓ

2Ω3

Define

Nosc =
(E[T ])2

Var[T ]
= 2π

(
Ω

Γ

)
.
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Experiment using a superconducting circuit qubit.

Experiment.

Wald
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Experiment using a superconducting circuit qubit.

Quantum model: measurement noise

Simulations Nosc :

Γ variance numerical Wald
0.1 0.070 56 98.7

0.05 0.033 101 197
0.01 0.039 987 1024
0.001 0.002 1861 1974

better match for weak measurement.
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Quantum thermodynamic uncertainty relations.

Quantum thermodynamic uncertainty relations.
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Quantum thermodynamic uncertainty relations.

Quantum model: measurement noise

Quantum parameter estimation for weak continuous
measurement.

Period estimation is a First Passage Time problem.

Kewming, et al. First Passage Times for Continuous
Quantum Measurement Currents, arXiv:2308.07810

Quantum thermodynamic uncertainty relations.
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Quantum thermodynamic uncertainty relations.

Quantum kinetic uncertainty relations (KUR).

Var[T ]

(∂θEθ[T ]|θ=0)
2 ≥ 1

IQ(0)
.

θ, estimated parameter,
IQ(0) = IQ(θ = 0) is the quantum Fisher information (QFI).

IQ(0) = E[T ](

classsical︷︸︸︷
N +

quantum︷︸︸︷
Q) ,

where

N = Γ , Q =
4Ω2

Γ
,

See Van Vu et al. Thermodynamics of Precision in Markovian Open Quantum Dynamics, Phys. Rev. Lett.

(2022).
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Quantum kinetic uncertainty relations (KUR).

Why does the Fisher information have a quantum
contribution?

Quantum probabilities are given by the Born rule

P(x |θ) = |ψθ(x)|2

Need amplitude and phase to determine statistical
distance. See Braunstein, Caves, GJM Annals of physics
(1996).
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Experiment.

decrease �

W
ald

Forbidden by KUR
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Quantum jump regime.

Conditonal dynamics: over-damped : Ω < Γ/2.
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Quantum jump regime.

FPT distribution:

P(T ) = µ2Te−µT ,

µ = ΓΩ2/(Γ2 +∆2)

E[T ] =
2
µ
, Var[T ] =

2
µ2 , Njump = 2 .
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Quantum jump regime: experiment
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Conclusions.

All clocks are dissipative systems pushed away from
thermal equilibrium by work or measurement.
At low temperature, weak continuous measurement
plays a special role to extract a clock signal.
At low temperature, quantum noise (spontaneous
emission, tunnelling, measurement back action) limits
clock accuracy.
Use coherent quantum feedback.
Engineer quantum noise for better clocks
(eg Wiseman, et al. The Heisenberg limit for laser coherence, Nat. Phys. (2021).
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