Contribution ID: 139

A Photonic Smart Sensor Based on Quantum Memories and Machine Learning

We present a scheme based on the temporal control of single-photon sources and single-photon detectors to learn the parameters of an optical cavity with a nonlinear response. The scheme works by learning the temporal shape of a single-photon pulse reflected from the cavity. This can be achieved using a Raman single-photon detector, a simple quantum memory, with a controllable read-pulse to select particular temporal modes. As an example, we discuss an optomechanical cavity to illustrate how the mechanical frequency and optomechanical coupling rate can be estimated by machine learning.

Primary authors: GHADIMI, Moji (University of Queensland); Dr MARSHMAN, Ryan (University of Queensland); Prof. MILBURN, Gerard (University of Queensland); Dr SHRAPNEL, Sally (University of Queensland)

Presenter: GHADIMI, Moji (University of Queensland)

Track Classification: Precision and Quantum Metrology with Atoms, Photons and Phonons