$h \rightarrow aa \rightarrow qqqq$ Analysis

Lessons from $h \rightarrow aa \rightarrow gggg$ Analysis

Sanha Cheong

Weekly Analysis Team Progress Meeting Nov. 29th, 2022

$h \rightarrow aa \rightarrow gggg$ Analysis

- Internal Note: <u>ATL-COM-PHYS-2022-017</u>
- Analysis by Murtaza Safdari
- Very mature, near complete
- Analogous final state
- Many lessons for us to benefit from
 - Overall analysis strategy
 - Background estimation
 - Control / Signal definitions
 - Expansions, improvements, etc.

Changes / Improvements / Discussion Points highlighted in Green

Overview

• Full Run-II data

- Z + h production with $Z \rightarrow \mu \mu$
 - We could probably extend to $Z \rightarrow ee$
 - Cut-flow baselines from other Z+jets and Vh analyses
- Background
 - **Dominated by Z+jets**
 - ttbar contribution negligible (<10% impact on closure)
 - This "could" be different for us

(HF might remove more Z+jets while leaving ttbar somewhat significant)

Signal v.s. Background

- NN to distinguish *S* from *B*
 - Event-level tagger for analysis
 - Two leading jets encoded by PFN
 - We (I) would like to use GNN
 - Combined with other info, e.g. $m_{ii}, Z \rightarrow l^+ l^-$ kinematics
- Calibration or Data / MC issues
 - No explicit calibration at the jet-level

(no known source of color singlet \rightarrow gg jets in SM)

- Uses NN to reweight Z+jets MC to data
 - Trained on *m_{ii}* side-band, excluding [85, 165] GeV
- Reweighted to match m_{ii} and ECF(2, 1) data profile
- Could/Should we do jet-level tagger instead?
 - "Event-level" information is not very complex

Background Estimation: ABCD Method

- Data-driven bkg. estimation using ABCD method
 - Two axes should be independent for background
 - Signal should be well-contained within one region
- Two axes: *m*_{ii} and event-level *NN* score
- Main challenge: ensure m_{ii} and NN independence
 - DisCo loss (Distance Correlation)
 - Regularization term that penalizes correlation
 - This is challenging to train
- Could we use other methods?
 - Adversarial or other method for decorrelation
 - Not using ABCD-method
- Both Pythia and Sherpa bkg. samples used

 $N_A = N_C N_B / N_D$

$$dCov^{2}(X,Y) = \langle |X - X'||Y - Y'| \rangle + \langle |X - X'| \rangle \langle |Y - Y'| \rangle - 2\langle |X - X'||Y - Y''| \rangle$$

$$dCorr^{2}(X,Y) = \frac{dCov^{2}(X,Y)}{dCov(X,X)dCov(Y,Y)}$$

$$L = L_{classifier}(\vec{y}, \vec{y}_{true}) + \lambda dCorr^{2}_{y_{true}=0}(\vec{m}_{jj}, \vec{y}),$$

Summary

- Any questions?
- Main points that I would like to discuss
 - Can we include $Z \rightarrow ee$ channel?
 - Less trivial than $Z \rightarrow \mu \mu$, but known standard procedures
 - We should do it, but this will take "some"

time

(VBF???)

- We should re-explore ttbar background
- Shall we use GNN for signal jets?
 - Yes (could be non-trivial, but most likely worth it)

- Discussion points (continued)
 - Jet-level v.s. event-level tagger
 - No clear preference
 - Jet-level tagger fine for bump-hunt,

might be inappropriate for ABCD

- Background estimation method (ABCD or not)
 - Some group preference towards **bump-hunt in m**_{jj}, if we can keep the signal peak tight (expect low stats. issue at the higher m_{ij} side for bkg.)
 - If bump-hunt, dedicated mjj regression will probably help significantly
- If ABCD, decorrelation method?