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Copyright statement and speaker’s release for video publishing

The author consents to the photographic, audio and video recording of this

lecture at the CERN Accelerator School. The term “lecture” includes any

material incorporated therein including but not limited to text, images and

references.

The author hereby grants CERN a royalty-free license to use his image and

name as well as the recordings mentioned above, in order to post them on

the CAS website.

The author hereby confirms that to his best knowledge the content of the

lecture does not infringe the copyright, intellectual property or privacy rights

of any third party. The author has cited and credited any third-party

contribution in accordance with applicable professional standards and

legislation in matters of attribution. Nevertheless the material represent

entirely standard teaching material known for more than ten years. Naturally

some figures will look alike those produced by other teachers.
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Purpose of the lecture

◼ Introducing aspects of non-linear dynamics

❑ Effects of nonlinear perturbations

◼ Resonances, tune shifts, dynamic aperture

❑ Mathematical tools for modelling nonlinear dynamics

◼ Power series (Taylor) maps and symplectic maps

❑ Analysis methods

◼ Normal forms, frequency map analysis

◼ Illustrate methods and tools for a simple example of an accelerator

❑ Storage ring
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Aim of the 1st Lecture

◼ Provide an introduction to some of the key concepts of nonlinear 

dynamics in particle accelerators

◼ Describe some of the sources of nonlinearities

◼ Outline some of the tools used for modelling 

◼ Explain the significance and potential impact of nonlinear dynamics 

in some accelerator systems
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From Linear to Non-linear
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From Linear to Non-linear

◼ Particle motion through linear components such as drifts, dipoles and 

quadrupoles can be represented by linear transfer maps

◼ For example, in a drift space of length    , the horizontal coordinate 

and the (scaled) horizontal momentum from initial position 0 to a 

final position 1 are 

◼ Note that the horizontal momentum is

where    is the relativistic factor,      is the rest mass of the particle,

is the horizontal velocity, and       is the reference momentum
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From Linear to Non-linear

◼ Linear transfer maps can be written in terms of matrices and for 

example for a drift space of length

◼ In general, a linear transformation can be written as

where the phase space vectors are

◼ The transfer matrix      and the vector     are constants, i.e. they do 

not depend on 
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From Linear to Non-linear

◼ The transfer matrix for a section of beamline can be found by 

multiplying the transfer matrices for the accelerator components 

within that section

◼ For periodic beamlines (i.e. a beamline constructed from a repeated 

unit), the transfer matrix for a single period can be parameterised in 

terms of the Courant–Snyder parameters and the phase 

advance    :

from s0 to s1

from s0 to s2

from s0 to s3

…
S0

S1 S2 S3 Sn-1

Sn

from s0 to sn
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From Linear to Non-linear

◼ The characteristics of the particle motion can be represented by a 

phase space portrait showing the co-ordinates and momenta of a 

particle after an increasing number of passes through full periods of 

the beamline
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From Linear to Non-linear

◼ If the transfer map for each 

period is linear, then the phase 

space portrait is an ellipse with 

area

◼ The action characterises the 

amplitude of the betatron 

oscillations

◼ The shape of the ellipse is 

described by the Courant–

Snyder parameters

◼ The rate at which particles 

move around the ellipse (phase 

advance per period) is 

independent of the betatron 

action
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From Linear to Non-linear

◼ Nonlinearities in particle dynamics can come from a number of 

different sources, e.g.

❑ Stray fields in drift spaces

❑ Higher-order multipole components in dipoles and quadrupoles

❑ Higher-order multipole magnets (sextupoles, octupoles...) used to 

control various properties of the beam;

❑ Electromagnetic fields generated by a bunch of particles, acting on 

individual particles within the same or another bunch (space-charge 

forces, beam-beam effects...)

◼ The effects of nonlinearities can be quite dramatic

◼ It is paramount to have some understanding of nonlinear dynamics 

for optimising the design and operation of many accelerator 

systems
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Non-linear transfer maps 

and effects of non-linearities
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Nonlinear transfer map: sextupole

◼ As example, consider the vertical field component in a sextupole

(i.e. a nonlinear) magnet:

with       the beam rigidity and      the normalized sextupole gradient  

◼ In “thin lens” approximation, the deflection of a particle passing 

through the sextupole of length     is

◼ The thin lens transfer map for the sextupole is
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Power series representation

◼ A nonlinear transfer map can be represented as a power series

◼ The coefficients are components of the transfer matrix

◼ The coefficients of the higher-order (nonlinear) terms are 

conventionally represented by          (2nd order),           (3rd order) and 

so on…

◼ The values of the indices correspond to components of the phase 

space vector:
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Example of a 

periodic system:

a simple storage ring



A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

3

16

A simple storage ring

◼ As example, consider the transverse dynamics in a simple storage 

ring, assuming:

❑ The storage ring is constructed from some number of identical cells 

consisting of dipoles, quadrupoles and sextupoles.

❑ The phase advance per cell can be tuned from close to zero, up to 

about 0.5×2π.

❑ There is one sextupole per cell, which is located at a point where the 

horizontal beta function is 1 m, and the alpha function is zero.

❑ Usually, storage rings will contain (at least) two sextupoles per cell, to 

correct horizontal and vertical chromaticity. To keep things simple, we 

will use only one sextupole per cell.
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Linear dynamics in a storage ring

◼ The chromaticity, and hence the sextupole strength, will normally be 

a function of the phase advance

◼ To investigate the nonlinear effects of sextupoles, we shall keep the 

sextupole strength fixed, and change only the phase advance

◼ We can assume that the map from one sextupole to the next is 

linear, and corresponds to a rotation in phase space through an angle 

equal to the phase advance:

◼ Again to keep things simple, we shall consider only horizontal 

motion, and assume that the vertical co-ordinate

◼ In “thin lens” approximation, the deflection of a particle passing 

through the sextupole of length     is
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Nonlinear transfer map: sextupole

◼ The map for a particle moving through a short sextupole can thus be 

represented by a “kick” in the horizontal momentum:

◼ Let us choose a fixed value , and look at the 

effects of the maps for different phase advances.

◼ For each case, we construct a phase space portrait by plotting the 

values of the dynamical variables after repeated application of the 

map (rotation + sextupole) for a range of initial conditions.

◼ First, let us look at the phase space portraits for a range of phase 

advances from 0.2 × 2π to 0.5 × 2π
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring



A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

3

22

Example of a simple storage ring
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Example of a simple storage ring
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Some observations

◼ There are interesting features in these phase space portraits to 

which it is worth drawing attention: 

❑ For small amplitudes (small x and px), particles trace out closed loops 

around the origin: this is what we expect for a linear map

❑ As the amplitude is increased, “islands” appear in phase space: the 

phase advance (for the linear map) is often close to m/p where m is an 

integer and p is the number of islands

❑ Sometimes, a larger number of islands appears at larger amplitude

❑ Usually, there is a closed curve that divides a region of stable motion 

from a region of unstable motion. Outside that curve, the amplitude of 

particles increases without limit as the map is repeatedly applied

❑ The area of the stable region depends strongly on the phase 

advance: for a phase advance close to 2π/3, it appears that the stable 

region almost vanishes altogether

❑ As the phase advance is increased towards π, the stable area 

becomes large, and distortions from the linear ellipse become small
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Effect of phase advance on 

nonlinear dynamics
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Effect of phase advance

◼ An important observation is that the effect of the sextupole in the 

periodic cell depends strongly on the phase advance across the 

cell

◼ We can start to understand the significance of the phase advance by 

considering two special cases:

❑ Phase advance equal to an integer times 2π

❑ Phase advance equal to a half integer times 2π
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Integer tune

◼ Let us consider first a phase advance equal to an integer times 2π. In that 

case, the linear part of the map is just the identity

◼ The combined effect of the linear map and the sextupole kick is:

◼ Clearly, the horizontal momentum will increase without limit

◼ There are no stable regions of phase space, apart from
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Half-Integer tune

◼ Now consider what happens if the phase advance of a cell is a half 

integer times 2π, so the linear part of the map is just a rotation 

through π

◼ If a particle starts at the entrance of a sextupole with and 

, then at the exit of that sextupole:

◼ Then, after passing to the entrance of the next sextupole, the co-

ordinates will be:
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Half-Integer tune

◼ Finally, after passing through the second sextupole:

◼ In other words, the momentum kicks from the two sextupoles

exactly cancel each other

◼ The resulting map is a purely linear phase space rotation by π. 

◼ In this situation, we expect the motion to be stable (and periodic), 

independent of the amplitude
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Impact of phase advance

◼ The effect of the phase advance on the sextupole “kicks” is similar to 

the effect on perturbations arising from dipole and quadrupole

errors in a storage ring

◼ In the case of dipole errors, the kicks add up if the phase advance 

is an integer, and cancel if the phase advance is a half integer

Eff ect of t he phase advance on t he nonlinear dynam ics

T he eff ect of t he phase advance on t he sext upole “ kicks” is

sim ilar t o t he eff ect on pert urbat ions arising from dipole and

quadrupole errors in a st orage ring.

In t he case of dipole errors, t he kicks add up if t he phase

advance is an int eger, and cancel if t he phase advance is a half

int eger.

CAS, B udapest , 2016 20 Nonlinear D ynamics: Part 2
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Impact of phase advance

◼ In the case of quadrupole errors, the kicks add up if the phase 

advance is a half integer times 2π

◼ Higher-order multipoles drive higher-order resonances but the 

effects are less easily illustrated on a phase space diagram

Eff ect of t he phase advance on t he nonlinear dynam ics

In t he case of quadrupole errors, t he kicks add up if t he phase

advance is a half int eger.

Higher-order mult ipoles drive higher-order resonances... but t he

eff ect s are less easily illust rat ed on a phase space diagram.
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Conclusions and Summary
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Some conclusions

◼ Nonlinear effects can limit the performance of an accelerator 

system

◼ Sometimes the effects are small enough that they can be ignored

◼ In many cases, a system designed without taking account of 

nonlinearities will not achieve the specified performance

◼ If we analyse and understand the nonlinear behaviour of a system, 

then, we may be able to devise means of compensating any 

adverse effects



A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

3

34

Summary

◼ Nonlinear effects can arise from a number of sources in 

accelerators, including stray fields, higher-order multipole 

components in magnets, space-charge, ...

◼ The transfer map for a nonlinear element (such as a sextupole) may 

be represented as a power series in the initial values of the phase 

space variables

◼ The effects of nonlinearities in accelerator systems vary widely, 

depending on the type of system in which they occur (e.g. a periodic 

accelerator)

◼ In some cases, nonlinear effects can limit the performance of an 

accelerator system. In such cases, it is important to take 

nonlinearities into account in the design of the system
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BACK UP
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Nonlinear effects in 

a bunch compressor
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Bunch compressors

◼ A bunch compressor reduces the length of a bunch, by performing 

a rotation in longitudinal phase space

◼ Bunch compressors are used, for example, in free electron lasers to 

increase the peak current
B unch compressor: st ruct ure and operat ion

CAS, B udapest , 2016 14 Nonlinear D ynamics: Part 1
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Bunch compressors

◼ The RF cavity is designed to “chirp” the bunch, i.e. to provide a 

change in energy deviation as a function of longitudinal position

within the bunch

◼ The energy deviation of a particle with energy      from a reference 

energy       is defined as:

◼ The transfer map for the RF cavity in the bunch compressor with 

voltage     and frequency       is:
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Bunch compressors linear dynamics

◼ Neglecting synchrotron radiation, the chicane does not change the 

energy of the particles. However, the path length depends on the 

energy of the particle.

◼ If we assume that the bending angle in a dipole is small:

◼ The bending angle is a function of the energy of the particle:

B unch compressor: st ruct ure and operat ion

Neglect ing synchrot ron radiat ion, t he chicane does not change

t he energy of t he part icles. However, t he pat h lengt h

depends on t he energy of t he part icle.

If we assume t hat t he bending angle in a dipole is small, 1:

=
2 1

cos
+ 2 ( 16)

T he bending angle is a funct ion of t he energy of t he part icle:

=
0

1 +
( 17)

CAS, B udapest , 2016 16 Nonlinear D ynamics: Part 1
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Bunch compressors linear dynamics

◼ The change in the co-ordinate     is the difference between the 

nominal path length, and the length of the path actually taken by the 

particle

◼ Hence, the chicane transfer map can be written:

where     is the nominal bending angle of each dipole in the chicane, 

and  is given by 

◼ Clearly, the complete transfer map for the bunch compressor is 

nonlinear, but how important are the nonlinear terms?
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Bunch compressors linear dynamics

◼ To understand the effects of the nonlinear part of the map, we will 

study a specific example

◼ First, we will “design” a bunch compressor using only the linear part 

of the map

◼ The linear part of a transfer map can be obtained by expanding the 

map as a Taylor series in the dynamical variables, and keeping only 

the first-order terms

◼ After finding appropriate values for the various parameters using the 

linear transfer map, we shall see how our design has to be 

modified to take account of the nonlinearities
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Bunch compressors linear dynamics

◼ To first order in the dynamical variables, the map for the RF cavity

can be written:

with

◼ The map for the chicane is 

with 
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Bunch compressors linear dynamics

◼ As a specific example, consider a bunch compressor for the 

International Linear Collider (ILC)

◼ Two constraints determine the values of         and  

❑ The bunch length should be reduced by a factor 20

❑ There should be no “chirp” on the bunch at the exit of the bunch 

compressor 

◼ With these constraints, we find (see Appendix):
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Bunch compressors linear dynamics

◼ We can illustrate the effect of the linearised bunch compressor map 

on phase space using an artificial “window frame” distribution:

◼ The rms bunch length is reduced by a factor of 20 as required, but 

the rms energy spread is increased by the same factor, because 

the transfer map is symplectic, so phase space areas are conserved 

under the transformation
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Bunch compressors non-linear dynamics

◼ Let’s apply now the full nonlinear map for the bunch compressor.

◼ We need first to make some assumptions for the RF voltage and 

frequency, and the dipole bending angle and chicane length in 

order for the coefficient and to have the appropriate 

values
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Bunch compressors non-linear dynamics

◼ As before, we illustrate the effect of the bunch compressor map on 

phase space using a “window frame” distribution:

◼ Although the bunch length has been reduced, there is significant 

distortion of the distribution: the rms bunch length will be 

significantly longer than what we are aiming for

◼ To reduce the distortion, we need to understand where it comes from 

◼ In the phase space shown above, we see a quadratic dependence 

of the final particle position      on the initial particle position     . 
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Bunch compressors non-linear dynamics

◼ Consider a particle entering the bunch compressor with initial phase 

space co-ordinates     and    . We can write the co-ordinates     and     

of the particle after the RF cavity to 2nd order in     and     :

◼ The co-ordinates of the particle after the chicane are (to 2nd order):

◼ If we combine the maps for the RF and the chicane, we get:
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Bunch compressors non-linear dynamics

◼ In order to eliminate the strong non-linear distortion, we have to 

eliminate the second term, i.e.

◼ By expanding the original map, 

as a Taylor series in   , we find that for small angles: 

◼ Now, it remains to determine , i.e. the coefficient for the 

second-order dependence of the energy deviation on longitudinal

position
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Bunch compressors non-linear dynamics

◼ The map of the energy deviation 

contains only odd order terms unless the RF cavity is operated out 

of phase, i.e.

◼ The first and second order coefficients in the transfer map for the 

energy deviation are:

and
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Bunch compressors non-linear dynamics

◼ Recall that                                       and 

◼ We also obtain 

◼ By imposing , we have that

◼ Using the expressions                                           

and

the voltage and phase are determined as 

and
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Bunch compressors non-linear dynamics

◼ As before, we illustrate the effect of the bunch compressor on phase 

space using a “window frame” distribution, using the parameters 

determined above, to try to compress by a factor 20, while minimising

the second-order distortion:

◼ The dominant distortion now appears to be 3rd order, and looks 

small enough that it should not significantly affect the performance


