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• maximize beam lifetime

• minimize emittance growth 
(hadrons)

• minimize component 
activation

• minimize impact on 
detectors, electronic 
components
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Why vacuum in accelerators ?

H2

CO

Beam

beam-gas scattering



Vacuum - Outline

1. Vacuum Basics
pressure, density, gas equation, pumping speed, flow regimes, 
conductance, pressure profile calculation

2. Accelerator Vacuum
requirements: bremsstrahlung, elastic scattering, emittance 
growth beam induced desorption: SR, ions

examples of vacuum chambers

3. Components for Vacuum Systems
pumps: turbo, ion sputter, NEG, cryo-pump

flange systems
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Pressure
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p

pressure = force / area
1 Pa = 1 N/m2 = 0.01mbar
1 atm = 105 Pa 
→ weight of 1kg/cm2

average velocity

number of molecules 
impinging per time and area

nv volume density of molecules
kb Boltzmann constant, 1.38×10-23 J/K

cyclotron resonator: continuous tuning 
required due to air pressure variation 

tuner
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Vacuum Pressure – Orders of Magnitude
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[mbar]
ambient
pressure

high 
vacuum 

ultra high 
vacuum 

volume
density

mean free
path N2

application

2.50×1019 cm-3

2.50×1013 cm-3

2.50×1010 cm-3

2.50×107 cm-3

60 nm

60 mm

60 m

60 km

insulating vacuum 

proton cyclotron 

electron storage ring 

„cold“ beam vacuum 

(low P) Units:
1mbar = 0.75 Torr
1mbar = 100 Pa

sputter processes
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Gas Equation and „amount of gas“
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R = 8.314 Nm / mole K
kb = 1.38×10-23 J/K

N = number of molecules
n = number of moles

thus PV [mbar l] is a measure of the amount of
gas (for a given temperature)
also: molar volume = 22.4 l / mol
(1atm = 101325 Pa, 273K)

to specify a leak rate: 
x [mbar l / s]

example bicycle tire:
P = 2.5bar, V = 1l, leak Q = 2×10-4 mbar l / s
after 1 Month (2.5 million sec): p = 2.0 bar

accelerator section, no pumping, no outgassing:
P = 10-10 mbar, V = 1000l, leak Q = 10-9 mbar l / s
after 1 Month (2.5 million sec): p = 2.5 10-6 mbar
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Pumping
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pump = device that
absorbs gas molecules

recipient

pump

pumping speed
S [ l/s ] = Q/P at pump interface
S varies for gas species

for example:
typ. ion getter pump: 60 l/s
turbo pump: 100 l/s
cryo pump: 500 l/s

gas load Q = 10-9 mbar l / s
S = 100 l/s → P ≈ 10-11 mbar
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Flow Regimes
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viscous flow:   << d,  Kn << 1 molecular flow:   >≈ d,  Kn >≈ 1

d

mean free path of gas molecules:

see also Knudsen Number:

for example:
N2, P = 10-6mbar,  ≈ 60m
→ molecular flow

heart attack! d /= 2 → C /= 8!
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Conductance
conductance is defined as the ratio of the molecular flux Q
to the pressure drop P along a vacuum vessel 
• function of the shape (eg. diam.) of the vessel
• the type of the gas 
• it´s temperature

P1 P2
Q

orifice:

tube:

example:
tube d=8 cm, l=30 cm: 200 l/s
tube d=1 cm, l=30 cm: 0,4 l/s

M = molecular mass
A  = area
d = diameter
l = length
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Conductance - Combining Vessels

C1 C2

C1

C2

example:
ion getter pump 400l/s connected by 
d=8cm, l=30cm tube: Seff = 136 l/s

pump
S = 400 l/s

d=8cm, l=30cm

Seff ?
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Sources of gas

main sources of gas in accelerator vacuum:

• thermal desorption

• beam induced desorption (synchrotron 
radiation, beam impact, electron cloud …) 
→ dynamic pressure, discussed later

• diffusion out of bulk materials

• permeation through materials

• virtual and real leaks
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thermal desorption
chem./phys. binding
char. time = sojourn time
e.g. Ed=1eV, T=293K
 = 5h

in practice, outgassing of water:
q(t) ≈ 3×10-9 mbar l / s cm2 / t [h]
baking! exponential dependence on T

bulk diffusion
diffusion coefficient D
mainly H2 relevant

va
cu

u
m
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Pump Down Processes
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volume: p  exp(-t)

surface: p  1/t

bulk,diffusion: p  1/sqrt(t)

permeation: 
p = const

log. scale:
different effects dominate 
after varying times

year
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Pressure Computation for 1-dimensional Systems
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specific conductance

specific pumping speed

specific outgassing rate

starting from definition of conductance 
C = Q / P
introduce correct sign and specific 
conductance:

continuity equation, change of flow by 
pumping and outgassing:

1-dim diffusion equation:

compare conductance of circular tube:

gas&tube specific length
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Quadratic Solution for lumped Pumps
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the parabolic profile results in following average 
and maximum pressure:

conductance limited
pumping speed

choose distance and pumping speed to achieve 
desired pressure and to reasonably balance 
both terms

example:
7cm tube, q0 = 5×10-12 mbar l / s cm², S=100l/s 
→ l=5m, Pavg = 1×10-9 mbar
→ l=3m, Pavg = 5×10-10 mbar
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General Solution by Matrix Transport of Q, P
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[V. Ziemann, SLAC/Pub/5962]

example calculation:
lumped pumps:  S = 100 l/s
distrib. pumps:   S = 60 l/s m
outgassing: q0 = 5×10-12 mbar l / s cm²
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Time Dependent Diffusion Equation
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specific volume [l/m]

example:

tube 7cm, diffusion time over 5m:
N2: 2.3 s; He: 0.9 s

tube 2cm, diffusion time over 5m:
N2: 8 s; He: 3 s

2cm tube
He gas injected

compare classical 
diffusion eq.:
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Monte Carlo Code Molflow+ (2008)
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C++ code, OpenSource since 2018 
J-L. Pons (ESRF), M. Ady, R.Kersevan (CERN)

Web site for info and downloads:

example calculation:
100k molecules tracked, computation time: 
few seconds, pressure profile
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Synrad+ for calculation of synchrotron radiation
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• Monte Carlo code computes photons generated by the beam and projects them 
onto the vacuum chamber surface

• in a second step the molecular outgassing is computed

• the result serves as input for Molflow+ to compute the pressure distribution 

• SR spectrum + flux

• calculates beam orbit from lattice file (MAD-X) 

• dipole approximation only, no undulator interference effects

https://molflow.web.cern.ch/content/synrad-documentation
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Next: 
Accelerator Vacuum
requirements: bremsstrahlung, elastic scattering, emittance growth 
beam induced desorption: SR, ions



Generic Beam Lifetime due to Beam-Gas Interaction
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l

beam
Nb particles

gas density n
molecule area 

results in differential 
equation:

solution:

probability 
of collision

 = cross section for 
generic „loss process“

specific loss processes by gas scattering
• bremsstrahlung (electrons)
• elastic scattering (Coulomb, nuclear)
• inelastic scattering (nuclear)
• multiple Coulomb: p-emittance growth

21



Electrons: Bremsstrahlung Lifetime
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Vn = 22.4l, molar Volume
NA Avogadro Number
E = E/E, energy acceptance
X0 gas specific radiation length

Bremsstrahlung
particle loses energy in Coulomb 
field of gas molecule;
is lost if leaving energy acceptance

resulting lifetime:

H2 He CH4 H2O CO Ar Air

X0 [m] 7530 5670 696 477 321 117 304

radiation length:
(normal condition)

example HERA-e:
E = 8×10-3; Ptot = 10-8 mbar
composition: 75% H2, 25% CO
brems = 16 h

Ek-E

E

+

-

[e.g. particle data booklet]
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Electrons: Elastic Coulomb Scattering
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Rutherford Scatting
diff. cross section for occurrence of scattering 
angle :

consider total cross-section for loss of 
electron, i.e. scattering beyond aperture Ay:

resulting lifetime:

sum over gas 
types and atoms 

per molecule

example HERA-e: 
pressure: Ptot = 10-8 mbar
composition: 75% H2, 25% CO
Zeff = rms(Zi) = 3.6
Ay = 20 mm, y,avg = 25 m

elastic = 5.200 h → insignificant
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Hadron Beam Emittance Growth
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multiple elastic scattering in the absence of radiation 
damping leads to diffusive emittance growth.

example HERA-p  growth rate:
Ek = 920 GeV, y,avg = 50 m
Ptot = 5×10-11 mbar @ 4.2 Kelvin, H2

emittance: x = 5×10-9 mrad

 = 2.000 h

definition of emittance 
growth time:

growth rate:

protons

electrons
HERA
 = 800m
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Synchrotron Radiation induced Desorption

4.10.2023, CAS M.Seidel, Accelerator Vacuum

measured desorption yield for 
different gases [G.Vorlaufer]

dynamic vacuum
• SR photons generate photoelectrons, these desorb 

gas molecules from the surface
• desorption yield  per photon is reduced with 

integrated dose (conditioning)

SR photons per 
length and time:

resulting specific
outgassing:

measured dynamic pressure rise as a function 
of integrated current [PETRA-III, DESY]
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Reduced desorption by NEG Coating
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Synchrotron Radiation-Induced Desorption from a NEG-
Coated Vacuum Chamber, P. Chiggiato, R. Kersevan (1999)

→NEG coating reduces SR desorption 
immediately

→ conditioning is slower afterwards

→however, NEG coated chambers 
lead to good conditions in practice 
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Heavy Ion induced Gas Desorption
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demonstration of transmission breakdown by gas 
desorption

[measurements & simulations in AGOR cyclotron, 
KVI-Groningen, S.Brandenburg et al]

− transmission of 40Ar5+ 8 MeV per nucleon
− base vacuum 3 x 10-7 mbar
− injected intensity up to 6 x 1012 pps
− Beam-power:   320 W

beam intensity at r = 0 [1012 pps]
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→ release of 105 (!) gas molecules 
per lost ion is compatible with data
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Dynamic effect in LHC: Electron Cloud Effect
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 e-

e-

e-

e-

p p p

• photoelectrons can start avalanche effect resulting in intense electron clouds
• crucial: secondary electron yield (SEY), i.e. how many e- released per incoming e-

• results in pressure bump, heat load in cold systems (problem at LHC)
• may affect beam stability
• depends on bunch spacing and beam intensity

mitigations: 
• wall coating, e.g. graphite, TiN (low SEY)
• weak magnetic solenoid field

E(e-)  1..100eV
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Specialized Chambers: LHC & FCC with Beam Screens
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LHC FCC 

LHC(left), FCC 
comparison

courtesy images: M.Jimenez et al
F.Perez, M.Morrone, I.Bellafont et al
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Vacuum Chambers for Electron Synchrotron
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profile extruded aluminum, milled and bent 
(ρ=196m); NEG strip (St707) for pumping

cooling channel

NEG strip

pump slit, chicane

irradiated surf.low cost per meter, 
however: difficult interface 
to stainless steel flanges

solution:
explosion bondings SS/Al 
with 4cm Al thickness

aluminum

steel
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Next: 
Components for Vacuum Systems
pumps: overview, turbo, ion sputter, NEG, cryo-pump
flange systems, collimators, residual gas analysis (RGA)



Overview Pumps and Gauges
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✓

✓

✓

✓

can be used as
„Penning gauge“

discussed next slides
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Turbo Molecular Pump
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Wikipedia
molecule avg speed @ 

293K [m/s]
compression

ratio

H2 1800 103

He 1250 104

CO 470 109

blades at speed
v = 2r f
e.g. 30.000 rpm

= 300 m/s
v v

backflowmomentum
transfer

P1

P2

compression ratio = P2/P1

• pumps all gases
• blade speed similar molecule speed(!)
• 30.000 … 60.000 RPM
• works down to 10-10 mbar
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Sputter Ion Pump
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single penning cell
electric and magnetic field
gas ionization, acceleration

sputtered
material

implanted and burried
(only method for noble gases)chemisorption

implanted

pumping mechanism
implantation, chemisorption 
and burying of gas molecules

current is 
proportional to P
→ can be used as 
pressure gauge

34



Ion Sputter Pumps
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courtesy Agilent catalog

pumping speed:
2 l/s … 500l/s

weight:
0.3kg … 120kg

example:
modern Agilent 
200 pump

pumping port

permanent 
magnet

penning cells
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NEG – Non Evaporable Getter Pumps

• NEG captures gases by chemical reaction, e.g. H2O, CO, N2 permanently, H2 is 
dissolved in bulk material

• no pumping of noble gases – combination with sputter ion pumps required

• NEG must be activated by heating; e.g. St707TM @180°C..350°C
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oxidized surface fresh metallic surface

constantan strip for 
electric heating

activation SAES Getters

Zr-V-Fe alloy
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NEG Pump Designs
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images: SAES Getters

NEG + Ion sputter
combined

NEG cartridge NEG wafer

pills, disks, rings
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Cryo Pump
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high vacuum
flange

baffle

cold head stage I
45-80K

cold head stage II
10-20K

pumping
surface

[Lothar Schulz]

• high pumping speed for all gases

• cryo-condensation of N2, O2 and Ar on 
cold surface

• cold surface partly covered with
charcoal: cryosorption for H2, He, Ne

• periodic regeneration by warmup
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Metal sealed Flange Systems
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Helicoflex: Technetics Group Conflat Flange (CF) VAT Flange, flat seal

• low leak rate, UHV compatible
• radiation proof
• safe mounting
• easy leak search
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Inflatable Seals 
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O-ring grooves

evacuated intermittent volume

inflatable seals installed between resonators

• leak rate 10-6 mbar l / s 
• quick and simple mounting
• at positions with limited access or 

high activation 
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Collimators
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[LHC graphite collimator, 
R.Losito et al]

[PSI-HIPA >100kW avg
power, D.Kiselev et al]

[LHC collimator, 
S.Radaelli et al]

• collimators are parts of the vacuum system with multi-physics aspects

• some materials are not optimal for vacuum, e.g. graphite or graphite with MoGr
coating (porosity, outgassing, dust)

• straightness, thermal shock resistance, heat load and heat conductivity, efficient 
cooling, thermal outgassing, electrical conductivity, mechanical precision and 
reproducibility, radio-activation and handling
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Residual Gas Analysis (RGA)
• quadrupole mass spectrometers to analyze the composition of residual gases

• allows to assess the cleanliness of components and to diagnose problems
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[R.Gaiffi, PSI]

dirtyclean

H2O

H2

N2/CO

CO2
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Accelerator Vacuum - Summary
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Beam Vacuum

PumpingGas Sources

• outgassing, permeation/leaks
• beam induced: SR, ions, e-cloud

e.g. 10-11 mbar l / s cm2

e.g. SR:  = 10-5

• lumped: turbo, ion sputter, cryo
• NEG strips, NEG coating

e.g. e-synchrotron: 10-8 mbar
e.g. p-cyclotron: 10-6 mbar

e.g. Turbo S = 100 l / s 
e.g. Cryo: S = 800 l / s

• e: breamsstrahlung
• p: emittance growth 

vacuum engineering:
materials & materials preparation, 
mechanical stability, thermo-
mechanical problems

Pumps, Gauges, Flange Systems, 
Valves
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