Longitudinal calculations cheat sheet
Relativistic relationships
- Mass energy
E0=m0c2
- Total energy
E=Ekin+E0
- Momentum
E=(pc)2+E20−−−−−−−−−√
p=γm0βc
- Relativistic velocity
β=vc=pcE=1−1γ2−−−−−−√
- Lorentz factor
γ=EE0=11−β2−−−−−√
- Differential relationships
dpp=1β2dEE=γ2dββ
Machine parameters
- Magnetic rigidity
Bρ=pq
- Revolution period/frequency
T=2πRv=1f=2πω
- RF period/frequency
frf=hf=ωrf2π=1Trf
- Linear momentum compaction factor (and transition factor)
αc=ΔR/RΔp/p=1γ2t
- Linear phase slippage factor
η=ΔT/TΔp/p=−Δf/fΔp/p=αc−1γ2
- Other useful relationship
pR=β2Eω
Longitudinal equations of motion
- Equation of motion 1 - Phase slippage (drift) along the ring (continuous)
dϕdt=hηωpR(ΔEω)=hηω2β2E(ΔEω)
- Equation of motion 2 - Energy kick with single RF cavity (continuous)
ddt(Eω)=qV2π(sinϕ−sinϕs)
- Equation of motion 1 - Phase slippage (drift) along the ring (discretized over T)
ϕn+1=ϕn+2πhηΔEnβ2E
- Equation of motion 2 - Energy kick in cavity (discretized over T, ω˙ neglected)
ΔEn+1=ΔEn+qVsin(ϕn+1)−U0
- Beam energy gain per turn
U0=qVsinϕs
Bucket parameters and synchrotron motion
- Bucket height
ΔEmax=β2qVEπh|η|−−−−−−√Y(ϕs)
- Bucket height reduction factor
Y(ϕs)=∣∣∣cosϕs−π−2ϕs2sinϕs∣∣∣1/2
- Bucket area
Abk=16βωrfqVE2πh|η|−−−−−−√α(ϕs)
- Bucket area reduction factor
α(ϕs)≈1−sinϕs1+sinϕs
- Angular synchrotron frequency (small amplitudes)
Ω2s=2πfs=−ω2hηqVcosϕs2πβ2E
- Non-linear synchrotron frequency for a maximum amplitude in phase ϕu
Ω(ϕu)Ωs≈1−ϕ2u16
- Synchrotron tune
Qs=Ωsω
Differential relationships
C. Bovet et al., A selection of formulae and data useful for the design of A.G. synchrotrons, CERN-MPS-SI-Int-DL-70-4
Variables |
Equations |
B,p,R |
dpp=γ2tdRR+dBB |
f,p,R |
dpp=γ2dff+γ2dRR |
B,f,p |
dBB=γ2tdff+γ2−γ2tγ2dpp |
B,f,R |
dBB=γ2dff+(γ2−γ2t)dRR |