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• Introduction 

• Choice of parameters
• Frequency and voltage

• RF cavity parameters
• Shunt impedance, beam loading, power coupling

• Power amplifiers
• Tube or solid state

• Local feedbacks

• Longitudinal beam control system
• Building blocks: RF source and receiver

• Phase, radial and synchronization loops

• Summary

Outline
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Introduction
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Introduction

→What is below?

→How are RF signals generated which 
make the beam feel comfortable?

• The radiofrequency (RF) system 
transforms a string of magnets 
into an accelerator 

• Cavity most is the most visible part 
of an RF system

→ On top of the RF system food chain

→ Interacts directly with beam

Cavity

Power amplifier

Low-level RF
system

Beam

Beam
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Frequency and wavelength ranges

100 kHz
3 km

1 MHz
300 m

10 MHz
30 m

100 MHz
3 m

1 GHz
30 cm

10 GHz
3 cm

100 GHz
3 mm

SPS 200 MHz

PS main RF 
system

PS longitudi-
nal damper

CLIC 12 GHz

Long wave

Medium/ 
short wave

VHF

Microwave 
links
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Amplitude ranges

1 mV

1 mV

1 V

1 kV

1 MV

1 GV

LEP: 3.6 GV total

LLRF systems

Signals from beam 
pick-ups

ILC and CLIC: several TV

LHC: 16 MV

Cooled hadron 
beams 
(ELENA)

Electron light
sourcesSLS

LHC

Low/Medium 
energy hadron RF
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• Particle velocity depends on its type:

• Old television set (30 kV): Electrons at 30% of c0

Protons just at  0.7%

• Small synchrotron (500 MeV): Electrons at 99.99995%

Protons at 75.8%

→ Most electron accelerators at ‘fixed’ frequency

Particle velocity

p+e-

p+e-
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Parameter choices
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Accelerator type

Linear
(single pass)

RF system for high-energy accelerators

HadronsElectron
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(multi-pass)
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*Exceptions (rare) exist

*
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Choice of frequency (range)
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Advantages Disadvantages

• Large beam aperture

• Long RF buckets, large 
acceptance

• Wide-band or wide range 
tunable cavities possible

• Power amplification and 
transmission straightforward

• Bulky cavities, size scales ∝ 1/f, 
volume ∝ 1/f3

• Lossy material to downsize 
cavities

• Moderate or low acceleration 
gradient

• Short particle bunches difficult 
to generate

Why choose a low RF frequency?

RF frequencies below
~200 MHz for

→ Some hadron linear accelerators
→ Cyclotrons
→ Low- and medium energy hadron 

synchrotrons
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Advantages Disadvantages

• Cavity size scales ∝ 1/f,
volume ∝ 1/f3

• Break down voltage increases

• High gradient per length

• Particle bunches are short

• Maximum beam available 
aperture scales ∝ 1/f

• No technology for wide-band or 
tunable cavities

• Power amplifiers more difficult

• Power transmission losses

Why choose a high RF frequency?

RF frequencies above
~200 MHz used for

→ Linear accelerators
→ Electron storage rings
→ High energy hadron storage rings
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Limits to maximum gradient

Kilpatrick 1957,

f in GHz, Ecrit in MV/m

Wang & Loew, 
SLAC-PUB-7684, 1997

• Surface electric field in vacuum

1000
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→ High frequencies preferred for large gradient
E. Jensen
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If exact RF frequency not critical, choose standard value

→ Off-the-shelf RF components easily available in frequency 
ranges used by industry

→ Exchange of developments and equipment amongst 
research laboratories

Some standard frequencies

Accelerator Frequency

Hadron synchrotrons (PSB, PS, JPARC RCS, MR) <10 MHz

Hadron accelerators and storage rings (RHIC, SPS) ~200 MHz

Electron storage rings (LEP, ESRF, Soleil) 352 MHz

Electron storage rings (DORIS, BESSY, SLS,…) 499.6…499.8 MHz

Superconducting electron linacs and FELs (X-FEL, ILC) 1300 MHz

Normal conducting electron linacs (SLAC) 2856 MHz

High-gradient electron linac (CLIC) 11.99 GHz
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RF voltage
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• RF system expected to provide given energy gain

→ On-crest acceleration

→ Used in some linear accelerators

→ Insufficient in a circular accelerator

• More voltage provided to avoid on-crest acceleration

→ Off-crest acceleration

→ Needed for circular accelerator

→ Higher voltage for given energy gain

Minimum voltage requirement

→
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Bucket area dependence on stable phase

• In a circular accelerator the area in energy-time phase space 
(bucket area) depends on the stable phase

Below transition, fS = 0…90° Above transition, fS = 90°…180°

• Typical synchronous phase with respect to 0° or 180°

• Hadron accelerators: < 40°

• Electron storage rings: ~ 20°
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Minimum voltage requirement (circular)

The RF system must compensate

1. Energy gain per turn due to changing magnetic field

2. Energy loss, e.g., due to synchrotron radiation (electrons)

→ (mp/me)
4 = 18364 ~ 1.1 ∙ 1013 times less for protons 
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RF system overview

Cavity

Power amplifier

Low-level RF
system

Beam

Beam

→ Convert RF power into 
longitudinal electric field

→ Amplify low-power signal from 
beam control to kW, MW or GW

→ Provide RF signals with correct 
frequency, amplitude and phase
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RF system overview

Cavity

Power amplifier

Low-level RF
system

Beam

Beam

→ Convert RF power into 
longitudinal electric field

→ Amplify low-power signal from 
beam control to kW, MW or GW

→ Provide RF signals with correct 
frequency, amplitude and phase
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RF cavity
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Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

R CL

Z(w)

with
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Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

→ Resonant circuit can also be described by R, R/Q, w0 or any 
other set of three parameters

R CL

Z(w)

with
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Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

→ Resonant circuit can also be described by R, R/Q, w0 or any 
other set of three parameters

R CL

Z(w)
Dw



25

Cavity parameters

• Most common choice by cavity designers w0, R, R/Q – why?

• Resonance frequency, w0

→ Exactly defined for given application, e.g. hfrev

• Shunt impedance, R

→ Power required to produce a given voltage without beam

• “R-upon-Q”, R/Q

→ Defined only by the cavity geometry

→ Criterion to optimize a geometry

→ Detuning with beam proportional to R/Q
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Why R/Q?

→ Charged particle experiences cavity gap as capacitor

→ Cavity geometry with small R/Q to reduce beam loading

q

Cavity Beam induced voltage
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• RF wavelength large below ~10 MHz: >30 m

→ Would need huge cavities → too large for accelerators

→ Line resonators: l/4 resonator

→ Short circuit on one side → Voltage is zero

→ Open end on other → No current but voltage

Why is this resonator so common in particle accelerators?

RF cavities in low frequency range

Voltage Current

Transmission line, impedance ZL

l/4 length

Z(w) Short-
circuit
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• Coaxial structure with inner conductor as beam pipe

RF cavities in low frequency range

Z(w)

Accelerating 
gap, isolated

Beam axis
Short-
circuit

→ Still rather long geometry, 7.5 m at 10 MHz

→ Add         capacitive          or            inductive shortening

Plate
capacitor

Ferrite
inductivity
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Capacitive loading

→ Add capacitor at gap of cavity to shorten the resonator

→ Significantly reduces cavity size

→ Fixed frequency only

→ Small losses due to capacitor

→ Cavity in vacuum

NSLS, 52.88 MHz DESY PIA, 10.4 MHz, inner cond. Outer cond.

~1 m

ACOL, 9.53 MHz

M
. 

N
a

g
l
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→ Inductive loading with magnetic material shortens 
resonator from tens of meters to a device, lossy though

Inductive loading

CERN PSB Finemet cav., 0.6-18 MHz CERN PS, double gap, 2.8-10 MHz

• Additional advantage: permeability of ferrite can be 
controlled by DC bias current → variable inductivity

→ Cavity with programmable resonance frequency

→ Essential for hadron acceleration in low-energy accelerators

M
. 

P
a

o
lu

z
z

i

 BEAM

FINEMET

GAP
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→ Remove inductive or capacitive loading

C
. 
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SSC Low Energy Booster,
~47 MHz to 60 MHz

FNAL Booster 2nd harmonic,
76 MHz – 106 MHz, 100 kV

Tunable cavities at higher frequencies

→ Upper frequency limit for cavities with large tuning range
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→ Remove inner conductor from coaxial set-up

→ The resonator becomes a pill-box cavity

→ The basis for cavity resonators

Further increase frequency

Electric field, 
TM010-mode

Magnetic field, 
TM010-mode

E. Jensen

Beam axis

Beam axis

DORIS cavity
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Example: 400 MHz cavities in LHC

→ Reduce beam loading in RF cavities

→ Shunt impedance, R, low for small R/Q with normal 
conducting cavities → superconducting cavities in LHC

Bell shape: R/Q ~ 44 W, 400 MHz

→ 28 cavities, 5.3 MV/m

~o
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RF cavities in linear accelerators

• Beam only passes once → Maximize gradient

• Many accelerating cells to best reuse RF voltage

→ Cavity is the contrary to ‘one size fits all’

→ Many, many more variants

SuperHILAC, ~70 MHz, Berkley

CLIC, 12 GHz, ~100 MV/m
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Coupling power
into a cavity
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• Attack inductivity or capacitance of resonator, or combined

→ Coupling loop forms transformer with resonator inductivity

Coupling power into a cavity

C

Lc
MRF power

L
. 

S
ti

g
e

li
n

• Main coupler
PSI cyclotron

→ ~1 MW at 50 MHz

RL
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• Attack inductivity or capacitance of resonator, or combined

→ Capacitive divider to gap to
transform generator impedance
to cavity shunt impedance

→ Beam also couples
capacitively via the gap

Coupling power into a cavity

R CL

RF power

Cc

B
e

a
m

Coupler of CERN PS 40 MHz

→ Coupler forms one half of 
capacitor with the gap
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• Coupling through an electric antenna

Capacitive (electric) coupling

Electrical coupler to space Power coupler of LHC cavities
300 kW at 400 MHz

→ Coupler antenna transmits 
directly into the cavity

→ 2 MW at 540 kHz
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RF system overview

Cavity

Power amplifier

Low-level RF
system

Beam

Beam

→ Convert RF power into 
longitudinal electric field

→ Amplify low-power signal from 
beam control to kW, MW or GW

→ Provide RF signals with correct 
frequency, amplitude and phase
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Power amplifiers
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1. Power to accelerate beam → Wanted

2. Compensate beam-induced voltage → Refl. P

3. Compensate electrical losses in cavity → Heat

4. Compensate electrical losses in distribution → Heat

How much power is required?

(ideally)
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• Basically

Pout = g ∙ Pin or  Vout = 𝒈 ∙ Vin

• The ideal power amplifier

→ Large bandwidth: amplifies all frequencies equally

→ No saturation, infinite power

→ Zero delay

→ No added noise

→ Unconditionally stable and resistant to reverse power

→ Radiation-hard

→ Unfortunately such a device has not been invented yet

→ Let us have a look at some real amplifiers

Power amplifiers
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Cathode 
and 

filament

• Vacuum tube

• Heater + Cathode

• Heated cathode

• Coated metal, carbides, 

borides,…

• thermionic emission

• Electron cloud

• Anode

→Diode

e- e- e-

e-e-

Ua*
anode

e-

e-

e-
e-

e-

e-

Basics of grid tube

Ia

• From diode to tetrode amplifier

E. Montesinos

*For tube amplifier designs 
voltages are named U instead of V
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Ia

Cathode 
and 

filament

• Vacuum tube

• Heater + Cathode

• Heated cathode

• Coated metal, carbides, 

borides,…

• thermionic emission

• Electron cloud

• Anode

→Diode

e- e- e-

Ua

anode

Basics of grid tube

• From diode to tetrode amplifier

E. Montesinos
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Cathode 
and 

filament

e- e- e-

Ua

anode

e-

e-

e-
e-

→Triode

• Modulating the grid voltage 
proportionally modulates the 
anode current

• Transconductance

• Voltage at grid

→ Current at anode

• Limitations

• Parasitic capacitor from anode to 
control grid (g1)

• Tendency to oscillate

Basics of grid tube

• From diode to tetrode amplifier

E. Montesinos

Ug1
Control grid
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Cathode 
and 

filament

e- e- e-

Ua

anode

Ug1
Control grid

e-
e-

Basics of grid tube

Ug2
Screen grid

→Tetrode

• Screen grid

• Positive (lower anode)

• Decouple anode and g1

• Higher gain

• Limitations

• Secondary electrons

• Anode treated to reduce 
secondary emission

e-
e-

e-
e-

• From diode to tetrode amplifier

E. Montesinos
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Tetrode based power amplifier

Ua

Anode

Grounded 
screen grid

RF 
in

RF 
out

Cathode 
and 

filament

• Example of SPS 200 MHz amplifier, tetrode RS2004

→ Very simplified block diagram

Ug1
Control grid

Ug2
Screen grid

E. Montesinos
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Example: Tetrode amplifier driving SPS RF

• Two transmitters, 2  1 MW at 200 MHz (almost continuous)

• Eight tetrodes per amplifier

→ In operation since 1976

RS2004 tetrode Amplifier trolley Complete transmitter

E. Montesinos
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Tetrode amplifier driving PS RF

→ Frequency range 2.8…10 MHz, ~60 kW per cavity, 11 units

→ Space constraints to have amplifier installed below cavity

→ Tetrode is obvious choice

→ High power in small volume

→ Operates in radioactive environment

Amplifier trolley
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Basics of linear beam tube

• Klystron: a complete mini-accelerator

E. Montesinos

Cathode 
and 

filament

Ubeam

Uanode

Electron 
Gun

Drift 
Space

Collector

• Klystrons velocity 
modulation

• Converts the kinetic energy 
into RF power

• Vacuum tube

• Electron gun

• Thermionic cathode

• Anode

• Electron beam

• Drift space

• Collector

• e- constant speed until the 
collector
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Basics of linear beam tube

• Klystron: a complete mini-accelerator

E. Montesinos

Cavity Coupling
loop

Accelerating
gap

Beam
line

Ubeam

Uanode

Cathode 
and 

filament

• Cavity resonators and drift

• RF input cavity (Buncher)

→ Modulates electron velocity

• Drift space

→ Faster electrons catch up

→ Slower electrons fall behind

• RF output cavity (Catcher)

• Resonating atsame frequency
as input cavity

• At place where electrons are 
maximally bunched

• Kinetic energy converted into 
voltage and extracted
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Basics of linear beam tube

• Klystron: a complete mini-accelerator

E. Montesinos

• Cavity resonators and drift

• RF input cavity (Buncher)

→ Modulates electron velocity

• Drift space

→ Faster electrons catch up

→ Slower electrons fall behind

• RF output cavity (Catcher)

• Resonating atsame frequency
as input cavity

• At place where electrons are 
maximally bunched

• Kinetic energy converted into 
voltage and extracted
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Example: Klystrons driving accelerators

• 2  8 cavities, each driven by separate 400 MHz klystron, 330 kW

→ First klystron amplifiers powering a hadron collider

• Significantly more
power was required
to feed LEP (until 2000)

→ About 50 MW CW was
installed at 352 MHz

E
. 
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• 12 GHz pulsed 
klystron for CLIC

→ 50 MW in 1.5 ms
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• In a push-pull circuit the RF 
signal is applied to two 
devices

• One of the devices is active 
on the positive voltage swing 
and off during the negative 
voltage swing

• The other device works in the 
opposite manner so that the 
two devices conduct half the 
time

→The full RF signal is then 
amplified

→Needs two different type of 
devices

Basics of RF solid state amplifiers

NPN BJT

PNP BJT

Vin

VDC

Vout

E. Montesinos

BJT: Bipolar Junction Transistor
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• Another push-pull 
configuration is to use a balun
(balanced-unbalanced) 

• Power splitter, equally dividing 
the input power between the two 
transistors

• Balun keeps one port in phase 
and inverts the second port in 
phase 

• Since the signals are out of 
phase only one device is On at a 
time

→This configuration is easier to 
manufacture since only one type 
of device is required

Basics of RF solid state amplifiers

Vdc

Input balun
(Unbalanced-Balanced)

Output balun
(Balanced-Unbalanced)

0 ⁰

0 ⁰

180 ⁰
180 ⁰

NPN BJT

NPN BJT

Vin Vout

E. Montesinos
NXP Semi-

conductors AN11325
2-way Doherty amplifier with BLF888A
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Example: Soleil 45 kW, 352 MHz

DU1029UK

Electron storage ring running at 352 MHz

600 W, 300 VDC/30 VDC converter

330 W amplifier module
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Example: Soleil 45 kW, 352 MHz

Large scale solid state amplifier installations

45 kW per tower (2004 and 2007) 150 kW per tower (2012)

E. Montesinos

→ Requires a series of power combiners to moderate power per 
amplifier module to several tens of kilowatts
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Example: BESSY II

500 MHz solid state amplifiers: 4  80 kW for storage ring,
40 kW for booster synchrotron 

B. Schriefer

→ Power per module limited by RF transistors

→ Increasing with modern semiconductor devices

Amplifier modules 80 kW unit Combiner
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Example: SPS

200 MHz solid state amplifiers: 2  1.6 MW peak power,
2  16 towers per amplifier 

E. Montesinos

→ 80 modules per tower, 1280 modules with 5120 transistors
per amplifier

→ Presently the largest RF installation in a particle accelerator
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RF power amplifier

0.1
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Typical ranges (commercially available)

Transistors

solid state (x32)

grid tubes

klystrons

IOT CCTWTs

E. Jensen

Power capability of commercially available amplifier types
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How to choose the right RF amplifier?
Prefer tube amplifier, when Prefer solid-state amplifier, when

• Amplifier must be installed in 
the accelerator tunnel

• Expecting important spikes from 
beam induced voltage

• Large output power of a single 
device is required, without 
combiners

• Not much space is available

• High peak power in pulsed mode

• Amplifier must be compact 
and/or close to cavity

• Amplifier can be located in non-
radioactive environment

• Circulator can be installed to 
protect the amplifier

• Delay due to unavoidable 
combiner stages is little issue

• Sufficient space can be made 
available

• Continuous operation

• Amplifier can be separate from 
the cavity

→ Mostly no hard criteria → decide on case by case basis
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Summary

• RF system parameters

→Choose frequency and voltage wisely

• Parameters of RF cavities

→R, R/Q

→No ‘one-size fits’ all

• Power amplifier

→ Ideal amplifier does not (yet) exist

→Tube or solid-state based

• Feedbacks and longitudinal beam control

→Make the beam feel comfortable in bucket

→Beam phase, radial and synchronization loops
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• Introduction 

• Choice of parameters
• Frequency and voltage

• RF cavity parameters
• Shunt impedance, beam loading, power coupling

• Power amplifiers
• Tube or solid state

• Local feedbacks

• Longitudinal beam control system
• Building blocks: RF source and receiver

• Phase, radial and synchronization loops

• Summary

Outline
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RF system overview

Cavity

Power amplifier

Low-level RF
system

Beam

Beam

→ Convert RF power into 
longitudinal electric field

→ Amplify low-power signal from 
beam control to kW, MW or GW

→ Provide RF signals with correct 
frequency, amplitude and phase
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Local feedbacks
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• Energy transfer from cavity to beam, but from beam to cavity

→ Both, RF generator and beam can induced voltage in cavity

1. Reduce beam induced voltage by reducing R, but not efficient

→ Obviously needs more power → $$$

2. Feedback to decrease the apparent impedance for the beam

→ Use amplifier to counteract beam induced voltage

C

Reduction of cavity impedance

Drive

B
e

a
m

F
in

a
l 

a
m

p

RL

IG
IB
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• Energy transfer from cavity to beam, but from beam to cavity

→ Both, RF generator and beam can induced voltage in cavity

1. Compare drive signal (no beam) with gap (beam and generator)

2. Amplify inverted difference

Reduction of cavity impedance

Drive

B
e

a
m

F
in

a
l 

a
m

p

L

IG
IB

FB ret.

+

V

-

+

CR
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G
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 [
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B

]

Frequency [MHz]

Transfer function with 
and without feedback

~24 dB

Example: 10 MHz RF system in CERN PS

• Feedback gain of 24 dB

→ Equivalent impedance, 
Zeq(w)reduced

→ Impedance for amplifier 
remains unchanged, Z(w)

Cavity, 
amplifier with 

feedback
Z(w) Zeq(w)

Why not further reduction with more gain?

• Subtraction of gap voltage and drive signal imperfect due to

1. Delay of cables and amplifier

2. Parasitic resonances of amplifier and cavity system

Bandwidth   Achievable gain 
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- Fast wide-band feedback 
around amplifier (internal)
→ Gain limited by delay

• 10 + 1 ferrite loaded cavities, tunable from 2.8…10 MHz

Drive

+

FB ret.

+ 1-turn delay feedback
B

e
a

m

F
in

a
l 

a
m

p
.

Example: 10 MHz RF system in CERN PS
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- Fast wide-band feedback 
around amplifier (internal)
→ Gain limited by delay

• 10 + 1 ferrite loaded cavities, tunable from 2.8…10 MHz

Drive

+

FB ret.

- 1-turn delay feedback
→ High gain at n  frev+ 1-turn delay feedback

B
e

a
m

F
in

a
l 

a
m

p
.

Example: RF feedback with 1-turn delay



73

Frequency Frequency
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]

10 dB/div10 dB/div

Feedback off Feedback on
Open/closed loop  
transfer functions

Frequency [MHz]
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→ Reduce cavity impedance beyond stability limit of wide-band FB

→ Important additional impedance 
reduction 

→ Clever usage of beam periodicity 
in circular accelerator

Frequency [MHz]

Spectrum at cavity gap return

h
R

F
=

8

h
R

F
=

8

D
. 

P
e
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e
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t

Example: RF feedback with 1-turn delay
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RF system overview

Cavity

Power amplifier

Low-level RF
system

Beam

Beam

→ Convert RF power into 
longitudinal electric field

→ Amplify low-power signal from 
beam control to kW, MW or GW

→ Provide RF signals with correct 
frequency, amplitude and phase
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Global feedbacks
Low-level RF beam control
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Longitudinal beam control

• Local feedbacks → Act on individual RF stations

• Global feedbacks → Act on all RF stations simultaneously

Df

Df

Df

RF 
source

Time of flight 
compensation

F
ro

m
 b

e
a

m
 

co
n

tr
o

l

→ RF distribution to compensate time of flight between stations

→ Beam control drives all stations like a single one

t12
t231

2

3

t31
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Basic building blocks
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• Two signals at different frequencies w1 and w2

→ Phase difference, Df, between both signals changes linearly

→ Ambiguity to distinguish between Df = -p, p, -3p, 3p,...

→ Saw-tooth in phase means constant frequency difference

→ Equivalence of                                                                               
frequency and phase

Measure phase differences


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• Example: analogue 4 quadrant multiplier and low pass filter

• Signals:

Mixer or multiplier
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• Example: analogue 4 quadrant multiplier and low pass filter

• Signals:

Mixer or multiplier

Remove ripple → Low-pass filter
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• Example: analogue 4 quadrant multiplier and low pass filter

• Signals:

• Phase discriminator in approximately +/-90° range

Remove ripple → Low-pass filter

Relative: arbitrary shift by 90°

How to detect phase differences?
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RF sources
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What finally generates the RF signal to power amplifier and 
cavity?

→ Need an RF source!

• Electron accelerators

• Off-the-shelf high-performance laboratory generators
as reference: BESSY SR, CERN CTF3

• Dedicated commercial fixed-frequency sources with
low phase noise: free electron lasers, CERN AWAKE

• Proton accelerators

• Special sweeping RF sources, controlled by
beam-based loops: mostly in-house developments

RF sources
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• Degradation of signal quality due to noise

• Amplitude and/or phase jitter

• What is the difference between a coherent signal and noise?

→ Amplitude of coherent, quasi monochromatic signal (at 
200 MHz) is independent of observation bandwidth

→ Incoherent noise power (dominated by spectrum analyzer 
front-end amplifier/mixer) is proportional to bandwidth

→ Thermal noise power

Noisy RF signals

Noise

Noise
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• Compare noise power with carrier power as reference

Analysis of phase noise

Ratio of carrier 
to noise: dBc

Df

Bandwidth   Df = 1 Hz 
for normalization

• Noise power density

→ Its integral is the phase jitter and using

→ the jitter in time becomes  
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• Measure phase noise of a synthesized lab generator

Typical phase noise plots

Frequency range Dtrms [fs]

10…100 Hz 12.4

100 Hz …1 kHz 5.4

1…10 kHz 5.4

10…100 kHz 11.1

100 kHz…1 MHz 13.0

Total 31.0

→ Note: jitter values can be added as 
square root of quadratic sum

→ Convenient split to relevant ranges
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Variable frequency: direct digital synthesis

t

Frequency 
word

fclk Phase accumu-
lator

sin

cos

sin/cos
look-up

t

t

f

RF signal

Digital data

• Generate (almost) any frequency starting 
from a given clock frequency, fclk

• Digitally programmable in frequency

2n adder
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RF signal

Digital data

• Generate (almost) any frequency starting 
from a given clock frequency, fclk

• Digitally programmable in frequency
and phase

t

Frequency 
word

fclk Phase accumu-
lator

sin

cos

CORDIC

t

t

f

Phase offset 
word

t

f

→ Two output signals with ideal 90° phase shift

→ Output signals are digital data streams 

2n adder

Variable frequency: direct digital synthesis

COordinate Rotation
DIgital Computer
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Receivers
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I/Q representation of signals

• Any signal can be represented by amplitude A and phase f

→ In phase, I and quadrature, Q describe the same signal

→ Avoids phase discontinuities at 0, 2p, …

A

f

I

Q
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Signal receivers

• Radio with listens to beam or cavity signals

• Listens to amplitude and phase

→ With win ≈ wLO input signal is down-converted to base-band

→ Resulting I/Q vector rotates slowly with win - wLO

I

Q

I

Q
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Digital receivers

• No conceptual difference between analogue and digital

• Digitization can be performed at any level

→ Analog down-conversion of I and Q, then digital processing

→ High input frequencies beyond ADC sampling rates

I

Q

I

Q

ADC

ADC
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• No conceptual difference between analogue and digital

• Digitization can be performed at any level

→ Analogue mixers become digital multipliers

→ All digital receiver

→ Theoretically perfect I/Q symmetry

Digital receivers

I

Q

I

Q

ADC
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Vector modulator
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• Convert I/Q data into modulated RF signal

Invers receiver: vector modulator

I

Q

DAC
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• Convert I/Q data into modulated RF signal

→ Perfect I/Q symmetry difficult to achieve 

→ Up-conversion of digital signal to a high RF frequency

Inverse receiver: vector modulator

I

Q

DAC

DAC
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Beam phase loop
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fin, fin Df

Electronic phase-locked loop

Loop 
filter, 
H(w)

VCO

RF

Slow signal

• Frequency re-generation and multiplication

• Voltage controlled oscillator (VCO) locked in phase to input

fout, fout

fVCO

~fin - fVCO

1

n

→ Fixed phase relationship: fout/n – fin = const.

→ Optional divider: fout = n · fin
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Beam 
phase

Df

-

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

Beam phase loop

+

DDS
Digital 
synthesizer

RF

Slow signal

h frev (digital)

fRF

Loop 
filter

h · frev, from B, p

ferr ~Df
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Beam 
phase

Df

-
Loop 
corr.

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

Beam phase loop

+

DDS

→ Phase-locked loop with beam phase as reference for RF system

Digital 
synthesizer

fout = fin ± Df

fRF

Loop 
filter

h · frev, from B, p

Precision VCO

RF

Slow signal

h frev (digital)

ferr ~Df
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Beam 
phase

Df

-
Loop 
corr.

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

Beam phase loop

+

DDS

→ Fast control of RF frequency to cavities, but no slow corrections

Digital 
synthesizer

fout = fin ± Df

Precision VCO

fRF

Loop 
filter

h · frev, from B, p

RF

Slow signal

h frev (digital)

ferr ~Df
Move the wave!
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Effect of beam phase loop at injection

• Example: Injection of a bunch from PS Booster into PS

→ Essential in hadron accelerators to keep RF locked to beam

→ How does this look like in longitudinal phase space?

90° error, phase loop off 90° error, phase loop on
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Effect of beam phase loop at injection

Bunch in rigid bucket, no loop Injection with phase loop

→ Essential in hadron accelerators to keep RF locked to beam

→ Even large transients (injection, transition) are controlled

→ Only minor longitudinal perturbation
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Beam phase loop during acceleration

→ What happens with 
phase loop during 
acceleration?

→ During plateaus the 
phase between RF 
and beam is either
0° or 180°

→ Fast phase changes 
well handled, but 
need slow frequency 
correction

→ Radial or synchro-
nization loop

1.48 s

Df

Injection

Acceleration to 
intermediate plateau

Intermediate
plateau

Restart 
acceleration

Transition

End of 
acceleration

Ejection
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Radial loop
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Radial loop

HybridD S

D/S

DR

Reference magnet

B

frev

Df

h·frev

DDS

Frequency 
program

RF

Slow signal

Digital signal

Beam

→ Slow correction 
of average RF 
frequency
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Radial loop

• Slow correction of RF frequency to keep beam centred

Why needed at all with arbitrary
precision synthesizers driving the RF system?

→ At transition energy

→ Longer path of higher energy particle compensated by 
higher velocity

→ No revolution frequency change for energy offset

→ Need beam-based
frequency correction
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Synchro(nization) loop
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Beam 
phase

Df

-
Loop 
corr.

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

Beam phase loop

+

DDS

→ Fast control of RF frequency to cavities, but no slow corrections

h · frev, from B, p

fout = fin ± Df
ferr ~Df

fRF

Loop 
filter

Digital 
synthesizer

Precision VCO

RF

Slow signal

h frev (digital)
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Beam 
phase

Df

-
Loop 
corr.

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

Synchronization loop, internal reference

+

DDS

fRF

Loop 
filter

Ref.
DDS

Df

fRF, ref.

→ Avoids noise from radial detection when not crossing transition

h · frev, from B, p

Loop 
filter

RF

Slow signal

h frev (digital)

ferr ~Df



111

Beam 
phase

Df

-
Loop 
corr.

Phase pick-up

RF cavity

Cavity 
phase

Power 
amplifier

Synchronization loop, external reference

+

DDS

fRF

Loop 
filter

Df

fRF, ref.

h · frev, from B, p

Loop 
filter

fRF, ref from 
another 

accelerator

→ Synchronize between accelerators for transfer

RF

Slow signal

h frev (digital)

ferr ~DfSynchronous 
phase, fs
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Before synchronization

Target accelerator is 
master at transfer

Target accelerator is 
master at transfer

• Simple test case of circumference ratio 2: C2 = 2C1

→ Synchronize both accelerator to force: frev,1 = 2frev,2
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After synchronization

Source or target accelerator           
is master at transfer

• Simple test case of circumference ratio 2: C2 = 2C1

→ Revolution frequencies coupled: frev,1 = 2frev,2

→ Ready to extract during every turn of the target accelerator
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Summary

• RF system parameters

• Parameters of RF cavities

• Power amplifier

• Local feedbacks

→Direct and 1-turn delay feedback

• Building blocks of low-level RF systems

→Phase comparison, RF sources and receivers

• Basic global feedback loops

→Beam phase, radial and synchronization loops

→Make the beam feel comfortable!
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Thank you very much            
for your attention!
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• For a single harmonic RF system

1. with                             it becomes

2. using

3. this simplifies to 

Normalized Hamiltonian representation
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• Efficient implementation of low pass filter

• Standard form with sampling rate decimation: fclk → fclk/d

Cascaded integrator-comb filter (CIC) 

z-1

-

+

z-1

-

+

…
+

z-1

+

+

z-1

+

…

Comb stages Integrator stages

#1 #n #1 #n

fclk Fclk/d

n: filter order
d: decimation ratio

→ Easy to implement in programmable logic: no multipliers

→ Only adders and shift registers
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Why particularly interesting for circular accelerators?

• Choose clock frequency, fclk = 2m frev and decimation d = 2m

→ Notches at all multiples of frev except zero

→ Linear phase f(f) → filter behaves like a constant delay

 Ideal low-pass filter in digital receivers

→ Filter selected multiple of frev while suppressing all others 

Cascaded integrator-comb filter (CIC) 

Amplitude Phase
Example:
fclk = 128frev,
d = 128,
n = 3
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• Thermal drift of long coaxial cables or optical fibres 

• Thermal coefficient of 
delay:

Transmission of reference signals

RG223 coaxial cable

• Example: 2 km long RG223 cable with ~10 ms delay

→ DT of only 1° C (room temperature) changes delay by ~0.5 ns

→ 1.8° at 10 MHz (CERN PS), but 73° at 400 MHz (LHC)

• Optical fibres are typically 10…100 times more stable 

• What to do if this is still not sufficient?
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Simple synchronization process

Bunch should 
be here

Locked!
Df

Beam azimuth
(from phase loop)

Ref. azimuth 
(from master 

divider)

frev (h = 1)

Act on fRF of 
slave

Df

200 ms

1. Move beam to off-momentum (B const.):

→ Well defined frequency difference between accelerators

2. Measure azimuth error, when beam at correct azimuth

→ Close synchronization loop

→ Moves beam to ref. momentum


