
General Introductory Course, Santa Susanna (ES), 2023

Time & Frequency Domain Signals & Measurements
H.Schmickler, ex-CERN

CAS 2023 H.Schmickler

With slides from:

M.Gasior, R.Jones, M.Wendt
(CERN)

1



The author consents to the photographic, audio and video recording of this lecture
at the CERN Accelerator School. The term “lecture” includes any material
incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name
as well as the recordings mentioned above, in order to post them on the CAS
website.

The author hereby confirms that to his best knowledge the content of the lecture
does not infringe the copyright, intellectual property or privacy rights of any third
party. The author has cited and credited any third-party contribution in
accordance with applicable professional standards and legislation in matters of
attribution. Nevertheless the material represent entirely standard teaching
material known for more than ten years. Naturally some figures will look alike
those produced by other teachers.

Copyright statement and speaker’s release for video publishing



CAS 2023 H.Schmickler

- Introduction: What Is time domain and frequency domain?

- Fourier synthesis and Fourier transform
- Time domain sampling of electrical signals (→ ADCs)
- Bunch signals in time and frequency domain

a) single bunch single pass

b) single bunch multi pass (circular accelerator)
c) multi bunch multi pass (circular accelerator)

- Oscillations within the bunch (head-tail oscillations)
→ advanced course

Part I
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- Fourier transform of time sampled signals
a) basics

b) aliasing
c) windowing

- Methods to improve the frequency resolution
a) interpolation

b) fitting (the NAFF algorithm)
c) influence of signal to noise ratio
d) special case: no spectral leakage + IQ sampling

- Analysis of non stationary signals/spectra:
- STFT (:= Short time Fourier transform) (Gabor transform)

also called: Sliding FFT, Spectrogram
- multi-BPM combined signal analysis
- PLL tune tracking
- wavelet analysis (if time permits, not really relevant for 

accelerators, but really cool stuff)

Part II
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• At first: everything happens in time domain, i.e. we 
exist in a 4D world, where 3D objects change or 
move as a function of time.

• And we have our own sensors, which can watch this 
time evolution: eyes → bandwidth limit: 1 Hz

• For faster or slow processes we develop instruments 
to capture events and look at them:
oscilloscopes, stroboscopes, cameras…
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Introduction 1/3

5



• But we have another sensor: ears

• What is this?
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Introduction 2/3
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Introduction 3/3

• Once we perceive the material in frequency domain (our brain does this for 
us), we can better understand the material.
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Non matter whether we describe a phenomenon in time domain or in 
frequency domain, we describe the same physical reality. But the proper 

choice of description improves our understanding!



• Had crazy idea (1807):
• Any periodic function can 

be rewritten as a weighted sum 
of Sines and Cosines of 
different frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and other 
big wigs

– Not translated into English 
until 1878!

• But it’s true!
– called Fourier Series

– Possibly the greatest tool 

used in Engineering

Jean Baptiste Joseph Fourier (1768-1830)
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A periodic function f(x) can be expressed as a series of harmonics, weighted by 
Fourier coefficients cn

Fourier Synthesis
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1sincos −=+= ikikeik
Note:

Fourier Transforms (FT)
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There is also the term FFT := Fast Fourier Transform
This is nothing else than a DFT with N=2m; useful to speed up the computation



Fourier Transform Pairs 
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Image taken from
https://wiki.seg.org/wiki/Dictionary:Fourier_transform

Will use this when we come 
to “windowing”

Gaussian gives a Gaussian!

Not surprising

Somewhat surprising!

Remember this when we 
will treat bunches!
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Time pulse = infinite spectrum of sin-waves

A pulse at t=0 corresponds to an overlap of an 
infinite number of sin-waves with all possible 
frequencies of infinite length!

In the example at left a base wave is generated 
and then new waves are added each time with 
a 1% higher frequency.

Nice example to show that a correct 
mathematical model not necessarily 

corresponds to reality!
Imagine an electrical pulse of a generator: 
The waves generated should already have 

existed before the generator was built!
So “infinity” is not always “infinity”
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Now we need some definitions
in order to treat particle bunches

In real accelerators not all available 
RF-buckets are filled with particle 
bunches.
- a gap must be left for the 
injection/extraction kickers
- Physics experiments can impose a 
minimum  bunch distance, which is 
larger than one RF period (i.e. LHC) 

Revolution frequency:    ωrev = 2π frev

RF frequency: ωRF = 2π fRF = h* ωrev (h=harmonic number)

Bunch Repetition frequency: ωrep = 2π frep = ωRF /n (n= number of RF buckets between bunches)

(frep = 1/bunch spacing)
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Example LHC beam



• Time and frequency domain description

• Measurement of bunch length in time domain

→ Sampling electrical signals with ADCs

• Measurement of bunch length in frequency domain

Single bunch single pass
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Understanding beam signals in 
time and frequency domain

We start with:
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Particle beam with gaussian longitudinal distribution
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A0, pick amplitude

σt

bunch length

σf
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Bunched beam longitudinal signal shape I
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In many  cases the description of the longitudinal bunch signal as 
“Gaussian” is adequate and sufficient. Depending on the study, more 
sophisticated descriptions are needed (next slide).
Typical bunch length for circular (high energy accelerators):

Protons:    ~50 ns…0.5 ns (LHC)       electrons:     1ns … ~10 ps (LEP)
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Bunched beam longitudinal signal shape II



• Sampling (=measurement) of an electrical signal in regular time 
intervals. The electrical signal is obtained from a monitor, which is 
sensitive to the particle intensity.

Time domain measurement of single bunch
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Quantization error
▪ Here we consider only an ideal quantization

of a continuous signal (no sampling).
Quantized signal is an approximation o the input 
signal; their difference is the quantization noise.

▪ Used quantities:

▪ A – input signal amplitude

▪ n – number of bits

▪ q – one bit amplitude: 

▪ Max quantization error:

▪ RMS amplitude of the input signal:

▪ Quantisation error RMS amplitude:

▪ Signal to Noise Ratio:

▪ Effective Number of Bits: 
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2
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12
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2
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6

2
2𝑛 𝑆𝑁𝑅 dB = 20 log10

6

2
2𝑛 ≅ 1.76 + 6.02 𝑛

𝐸𝑁𝑂𝐵 =
𝑆𝑁𝑅 dB − 1.76

6.02

A few slides on Analog-digital conversion
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ADC’s: Further considerations
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• Simple case: digitization of continuous signals
• Beam signals are different:

- usually short pulses
- shape of pulses changes due to beam dynamics
- good idea is to “look” at these signals with analogue means (analogue 
oscilloscopes) before using digitized information and/or use filtering 

• Criteria/buzzwords to design an ADC system:
- required resolution → number of bits
- required bandwidth → sampling frequency
- stability/synchronicity of ADC clock → clock jitter
- signal level → use full scale of ADC
- noise contribution: shielding, low impedance signals (low thermal noise)

21



Sampling a pulse

▪ 50 mV/div, 2 ns/div

▪ SPS beam

▪ 2 pairs of 10 mm button 
electrodes

▪ Signals already “filtered” by quite 
long cables

CAS 2023 H.Schmickler 22



ADC performance chart from 2018!
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Frequency domain measurement of single bunch
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Nice example from R&D work in 
CTF3 (CERN)
A.Dabrowski et al., Proc of PAC07, 
FRPMS045

Primary signal is EM wave of beam 
extracted through a thin window

Subdivision into 4 frequency bands

Measurement of rms amplitude in 
the 4 bands

24



CTF3 results
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Time domain measurements of 4 bands

FFT of down-converted signals

fit
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Analysis of bunch signals
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After these introductory remarks we shall look at signals 
produced in an accelerator and understand them:

1. Single bunch single passage: Already done

2. Single bunch - multi pass

3. Multi bunch – multi pass…will be a bit mind boggling,
but still very relevant!



Single bunch multi pass (circular accelerator)
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Time domain
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• The continuous spectrum of a single bunch passage  becomes a 
line spectrum. 

• The line spacing is frev= 1/Trev . (Trev = revolution time)

• The amplitude envelope of the line spectrum is the “old” single 
pass frequency domain envelope of the single bunch.

• Why?
- short answer: Do the Fourier transform! 
- long answer: 
Understand in more detail  2,3,4…N consecutive bunch           
passages in time and frequency domain (next slides)

Understanding the revolution harmonics
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Bunch pattern simulations (1/4)
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1 bunch 0.5 
nsec

2 bunches
0.5 nsec

Δt = 5 nsec

• Frequencies in this range make a constructive interference (no phase difference)
• Frequencies in this range cancel each other (1800 phase difference)
• Other frequencies intermediate summation/cancelation

29



Bunch pattern simulations (2/4)
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Δt= 5 nsec

Δt= 10 nsec

Δt= 20 nsec

First harmonic @ 200 MHz

First harmonic @ 100 MHz

First harmonic @ 50 MHz
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Bunch pattern simulations (3/4)
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From top to bottom:
3, 5, 10 bunches (0.5nsec long, Δt = 10 nsec)

31



Last bunch pattern simulation
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• 100 equidistant bunches (Δt = 10 nsec)
• Resulting spectrum is a line spectrum with the fundamental line given by the 

inverse of the bunch distance

32



• Circular accelerator

→ Beam signal periodic with revolution frequency: wrev

→ Spectral components at:

A Measured Longitudinal beam spectrum

wrev

Spectrum of single bunch

Multi-bunch beam

wRF

2wRF

3wRF

Bunch not Gaussian.
Somewhat between triangular and parabolic
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LHC longitudinal frequency spectrum
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And if this was not enough: 
amplitude modulation of bunch signals

m= modulation index 0…1 (Venv = Vc)

Using trigonometric identity:

35

Any amplitude modulation in time domain 
leads to sidebands in frequency domain
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Relevant example of amplitude modulation: 
stimulated betatron oscillation(or: tune measurement)

this means an amplitude modulation of the intensity signal by transverse excursions

Beam centre of charge makes small betatron oscillation around the closed orbit
(- stimulated by an exciter or by a beam instability)

Depending on the proximity to an EM sensor the measured signal amplitude varies.

taken from R.Jones,

proc. of BI-CAS 2018
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taken from R.Jones,
proc. of BI-CAS 2018
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A measured signal as example

Time domain signal of one beam sensor during a betatron oscillation of the 
beam (visible as amplitude modulation)
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The same in frequency domain

As expected revolution lines (attention log. X-axis!) with betatron side bands.



• In the case of more than one bunch (N) in the accelerator (assume 
equal intensities filled at equal distances!) one cannot distinguish
between 
- an accelerator with 1 bunch and a revolution time of trev

- an accelerator with N bunches and a revolution time of trev /N

One bunch/several bunches?

40 CAS 2023 H.Schmickler
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• If one has N bunches of equal intensity circulating in an 
accelerator with Trev and those bunches only move coherently 
without any phase difference, then this is undistinguishable 
from an accelerator with Trev/N as revolution time and one 
bunch in this accelerator

• In reality the oscillations of individual bunches are not 
correlated and in consequence the time domain and frequency 
domain signals get really mind-boggling.

• The study of these oscillations is important in case of multi-
bunch instabilities or in case of the design of transverse active 
feedback systems

CAS 2023 H.Schmickler

Multi-bunch multi-pass

41



• The additional bunches will create additional spectral lines in 
frequency domain. Depending on the number of bunches the 
spacing between these lines can become so narrow, such that 
overlap of the beam spectral lines with the resonance of 
structures around the beam pipe (HOM modes of cavities for 
example) can excite the beam to oscillations.

• This can lead to beam blow up or even particle losses.
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Why do we worry about this?



Multi-bunch Multi-pass 
Mode Analysis

Let us consider M bunches equally spaced around the ring

The bunches do in general not oscillate coherently. Instead of following the 
oscillations of every bunch individually, we describe the motion of every bunch as 
the weighted sum of eigenmodes of oscillations, the so called multi-bunch modes.

Each multi-bunch mode is characterized by a bunch-to-bunch phase difference of:

m = multi-bunch mode number (0, 1, .., M-1)M
m

2
=

Each multi-bunch eigenmode is characterized by a set of frequencies:

Where: 

p is and integer number    - <  p <  ;   p=0 := baseband

wrev is the revolution frequency

Mwrev = wrep is the bunch repetition frequency, 
ν is the tune, i.e. the eigenfrequency of transverse or long. oscillations

Hard to understand like this…needs some graphics

ω = 𝑝 𝑀ω𝑟𝑒𝑣 ± 𝑚 + ν ω𝑟𝑒𝑣



Multi-bunch modes: single stable bunch

transverse.  One single stable bunch

Every time the bunch passes through the pickup ( ) placed at coordinate 0, a pulse with
constant amplitude is generated. If we think it as a Dirac impulse, the spectrum of the
pickup signal is a repetition of frequency lines at multiple of the revolution frequency:

pwrev for - < p < 

wrev 2wrev 3wrev

.  .  .  .  . .  .  .  .  .

−wrev−2wrev−3wrev 0

Pickup 
position



Multi-bunch modes: single oscillating bunch

One single unstable bunch oscillating at the tune frequency nw0: for simplicity we 

consider a vertical tune n < 1, ex. n = 0.25.          M = 1 → only mode #0 exists

The pickup signal is a sequence of pulses modulated in amplitude with frequency nw0

Two sidebands at ±nw0 appear at each of the revolution harmonics

wrev 2wrev 3wrev

.  .  .  .  . .  .  .  .  .

−wrev−2wrev−3wrev 0

Pickup



Multi-bunch modes: 10 stable bunches

Ten identical equally-spaced stable bunches (M = 10)

The spectrum is a repetition of frequency lines at multiples of the bunch repetition

frequency: wrep = 10 wrev (bunch repetition frequency)

.  .  .  .  . .  .  .  .  .

wrep 2wrep 3wrep−wrep−2wrep−3wrep 0

Pickup



Multi-bunch modes: 10 unstable bunches (m=0)

Ten identical equally-spaced unstable bunches oscillating at the tune frequency nw0 (n = 0.25)

M = 10  → there are 10 possible modes of oscillation

Ex.: mode #0 (m = 0)    =0      all bunches oscillate with the same phase 

M
m

2
=

Pickup

m = 0, 1, .., M-1

wrep/20 wrev 2wrev 4wrev

Mode#0

3wrev



Ex.: mode #1 (m = 1)     = 2/10    (n = 0.25)

w = pwrep ± (n+1)wrev - <  p < 

wrep/20 wrev 2wrev 4wrev

Mode#1

3wrev

Pickup

Multi-bunch modes: 10 unstable bunches (m=1)



wrf/20 w0 2w0 4w0

Mode#2

3w0

Ex.: mode #2 (m = 2)     = 4/10      (n = 0.25)

w = pwrep ± (n+2)wrev - <  p < 

Pickup

Multi-bunch modes: 10 unstable bunches (m=2)



wrep/20 wrev 2wrev 4wrev

Mode#3

3wrev

Ex.: mode #3 (m = 3)     = 6/10    (n = 0.25)

w = pwrep ± (n+3)wrev - <  p < 

Pickup

Multi-bunch modes: 10 unstable bunches (m=3)



wrf/20 wrev 2wrev 4wrev

Mode#5

3wrev

Ex.: mode #5 (m = 5)     =               (n = 0.25)

w = pwrep ± (n+5)wrev - <  p < 

Pickup

Multi-bunch modes: 10 unstable bunches (m=5)

Mode#5

Aliasing!!!



wrf/20 w0 2w0 4w0

Mode#6

3w0

Ex.: mode #6 (m = 6)     = 12/10       (n = 0.25)

w = pwrf ± (n+6)w0 - <  p < 

Pickup

Multi-bunch modes: 10 unstable bunches (m=6)



Multi-bunch modes: summary  (10 bunches)

If the bunches have not the same charge, i.e. the buckets are not equally filled (uneven
filling), the spectrum has frequency components also at the revolution harmonics (multiples

of wrev). The amplitude of each revolution harmonic depends on the filling pattern of one
machine turn

wrep/20 wrev 2wrev 4wrev

9

3wrev

8 7 6 51 2 3 40

wrep6wrev 7wrev 9wrev

4

8wrev

3 2 1 06 7 8 95

Lower sidebands of first revolution harmonics

ω = 𝑝 𝑀ω𝑟𝑒𝑣 ± 𝑚 + 𝑞 ω𝑟𝑒𝑣



Multi-bunch modes: coupled-bunch instability

One multi-bunch mode can become unstable if one of its sidebands overlaps, for example, 
with the frequency response of a cavity high order mode (HOM). The HOM couples with 
the sideband giving rise to a coupled-bunch instability, with consequent increase of the 
sideband amplitude

nwrev

Response of a cavity HOM

Effects of coupled-bunch instabilities:

 increase of the transverse beam dimensions

 increase of the effective emittance

 beam loss and max current limitation

 increase of lifetime due to decreased Touschek 
scattering (dilution of particles)

Synchrotron Radiation Monitor 
showing the transverse beam shape



ELETTRA Synchrotron: frf=499.654 Mhz, bunch spacing≈2ns, 432 bunches, f0 = 1.15 MHz

nhor= 12.30(fractional tune frequency=345kHz), nvert=8.17(fractional tune frequency=200kHz) 

nlong = 0.0076 (8.8 kHz)

00 )( wnww += mMp

Spectral line at 512.185 MHz

Lower sideband of 2frf, 200 kHz apart 
from the 443rd revolution harmonic

→ vertical mode #413

200 kHz

Rev. harmonic

Vertical mode 
#413

Spectral line at 604.914 MHz

Upper sideband of frf, 8.8kHz apart from 
the 523rd revolution harmonic 

→ longitudinal mode #91

Rev. harmonic

Long. mode 
#91

8.8kHz

Real example of multi-bunch modes
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- Fourier transform of time sampled signals
a) recap of basics

b) aliasing → limitation of usable bandwidth to 50% of sampling frequency

c) windowing

- Methods to improve the frequency resolution
a) interpolation

b) fitting (ex: NAFF algorithm)
c) influence of signal to noise ratio

- Analysis of non stationary signals/spectra:
- STFT (:= Short time Fourier transform) (Gabor transform)

also called: Sliding FFT, Spectrogram
- multi-BPM combined signal analysis
- PLL tune tracking
- wavelet analysis (if time permits, not really relevant for 

accelerators, but really cool stuff)

Part II
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• Discrete Fourier Transform basics

Discrete Fourier Transforms

In general: 

We use DFTs of N equidistant time sampled signals; 

A FFT (Fast Fourier transform) is a DFT with N= 2k

CAS 2023 H.Schmickler
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Aliasing
• Periodic signals, which are sampled with at 

least 2 samples per period, can be 
unambiguously reconstructed from the 
frequency spectrum. (Nyquist-Shannon 
Theorem)

• In other words, with a DFT one only obtains 
useful information up to half the sampling 
frequency.

• Antialiasing filters need to be inserted 
upstream of the sampling in order to suppress 
unwanted higher spectral information.

CAS 2023 H.Schmickler
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Spectral leakage caused by windowing

By measuring a continuous signal only over a finite length, we apply a “data 
window” to signal, which leads to spectral artefacts in frequency domain.
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• Recall: The Fourier transform of a product in time domain is the convolution of the 
individual Fourier transforms in Frequency domain

Windowing = Convolution of continuous signal with 
window function
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Rectangular window example

signal = amp1* sin (2π ω1t) + amp2 * sin(2π ω2t)

amp1 =1
amp2=0.01

ω1= 2π * 9990 Hz
ω2= 2π * 10010 Hz

The small signal 
component is 
completely masked 
by the sidelobe of 
the large signal

ZOOM

FFT
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Applying the Blackman-Harris window

signal = window * amp1* sin (2π ω1t) + amp2 * sin(2π ω2t)

amp1 =1
amp2=0.01

ω1= 2π * 9990 Hz
ω2= 2π * 10010 Hz

The small signal 
component is nicely 
resolved

ZOOM

FFT
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• The following link contains many frequently used window functions, their 
main features and application:

• https://en.wikipedia.org/wiki/Window_function

Popular window functions

The actual choice of the window depends 
on:
- The signal composition
- The required dynamic range
- The signal to noise ration

remark: every window except the 
rectangular window is linked to a loss in 
amplitude (we multiply many samples 
with almost “zero”)
→ reduced S/N up to 6 dB
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• Recall: basic frequency resolution: 
Δf = 2*fsamp/Nsamp

• We can interpolate between the frequency 
bin with maximum content and the left and 
right neighbouring bins

• We limit the discussion to “three point 
interpolation methods”

• The interpolation function is either:

A) a parabola of the measurements
(:= parabolic interpolation)

B) a parabola of the log of the   
measurements
(:= Gaussian interpolation)

• Can get up to 1/N2 resolution

Improving the frequency resolution of a DFT spectrum

Details: https://mgasior.web.cern.ch/mgasior/pap/FFT_resol_note.pdf
CAS 2023 H.Schmickler 64
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Improving the frequency resolution of a DFT spectrum

from: https://mgasior.web.cern.ch/mgasior/pap/FFT_resol_note.pdf

𝐺𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝐺 ≔
Δ𝑓

2 𝑥 𝐸𝑟𝑟𝑜𝑟 𝑚𝑎𝑥.
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1. Assume a model function for the data (sample 1…N)
(i.e. in the most simple case a monochromatic sin wave),
in general samplei =f (i * Δt)

2. Get frequency and peak (or interpolated peak) from FFT: 
fmax and amax

3. Minimize:
Σ = σ𝑖=0

𝑁 (samplei)
2 – (amax * sin (2πfmax * Δt))2

by varying amax and fmax

(→NAFF algorithm:= Numerical Analysis of Fundamental Frequencies

→ NAFF algorithm can get up to 1/N4 resolution)

4. Very good convergence for noise free data
(i.e. predominantly in simulations)

Even higher frequency resolution: fitting the data
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A little summary on frequency resolution

• Frequency measurement error ε(N) as function of log (N)
for different S/N ratios

• Basic FFT resolution proportional to 1/N
• Plot shows result for interpolation using Hanning window.
• With interpolation and no noise proportional to 1/N2

• Data fitting (NAFF algorithm ) also very sensitive to S/N

1/N

1/N2

Taken from: R. Bartolini et al, Precise Measurement of the 
Betatron tune, Proceedings of PAC 1995, Vol. 55, pp 247-256
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Special case: no spectral leakage

The FFT of the so called background signal has no spectral leakage!!!!

All pictures: M.Gasior

CAS 2023 H.Schmickler 68



1. In the shown example the following relation holds:

𝑓
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑓
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

=
110

1024
=
𝑀

𝑁
(ratio of rational numbers)

2. This means that with the 1024 samples exactly 110 full periods of the 
background signals have been measured.

3. The mathematical equivalent is that we have not applied a window 
function (no truncation), we get as result of the FFT the pure sine wave 
corresponding to the background frequency.

4. In accelerators we often know the frequency of a signal for which we 
want to measure the amplitude (=multiple of RF frequency) → we can 
avoid spectral leakage.

5. Important application of 4: IQ-sampling at 4*f (next slide)

Special case continued:
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1. Excite beams with a 
sinusoidal carrier

2. Measure beam 
response

3. Sweep excitation 
frequency slowly 
through beam 
response

Other method: Network analysis
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• Stationary Signal
– Signals with frequency content unchanged in time

– All frequency components exist at all times

→ ideal situation for Fourier transform (FT)
( orthonormal base functions of Fourier transform are infinitely long, no time 
information when spectral component happens)

• Non-stationary Signal
– Frequency composition changes in time

→ need different analysis tools

– Illustration on the 3 following slides

Analysis of non-stationary spectra
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Example of  non-stationary signals
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Two stationary signals (single frequency) changing at one point in time.
Blue: lower freqeuncy first
Red: higher frequency first.
FT spectra identical; impossible to say which signal was first.
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Sliding time window
(and FT each time window advances)

Originally called Short Time Fourier Transform (STFT) or spectrograms
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Spectrogram of two consecutive signals at 
two distinct frequencies



Short Time Fourier Analysis

◼ In order to analyze small section of a signal, Dennis Gabor (1946), 

developed a technique, based on the FT and using windowing : 

Short Time Fourier Transform:= STFT

• A compromise between time-based and frequency-based views of a 
signal.

• both time and frequency are obtained in limited precision.
• The compromise between time and frequency resolution is given by the 

length of the time window.
• Usually one chooses a fixed length of the observation window during 

the analysis. CAS 2023 H.Schmickler 76
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3D view
Not  much readable 
information, but 
nice for 
publications 



STFT Measurement examples I

• A trace of a transverse tune 
signal over several seconds 
during the energy ramp of the 
CERN SPS proton accelerator.
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Even older:
Left: horizontal and vertical tunes during LEP acceleration
Right: Machine experiment: all 3 tunes and synchro-betatron coupling

STFT Measurement Examples II

CAS 2023 
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• Sampling in time and space in a circular accelerator
+ retransform of data as new set of samples only in time, 
but at a higher sampling frequency.

• Phase locked loop measurements of a single frequency 
(this way  “in the old days” a radio receiver worked); if 
you still now what this is?

• Wavelet analysis; not really used in accelerators, but 
used for example to find oilfields!
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Some more cool stuff:



• P.Zisopoulos et al, Phys. Rev. Acc.&Beams 22, 071002 (2019)

Refined betatron tune measurements by mixing BPM data
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A recent development: MultiBPM analysis

Basic idea: Create additional 
samples per turn by using 
data from neighbouring 
BPMs (up to 500 in the LHC) 
and transforming them 
from samples in space to 
samples in time.



• During the injection 
process into the CERN PS 
strong orbit deflectors 
are activated. In addition 
to the wanted orbit 
change this leads also to 
an unwanted tune 
change: Needs to be 
measured

• Single BPM 
measurements do not 
have enough time 
resolution at high 
frequency resolution

→ use several BPMs

With remarkable resolution 
for 40 turns
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MultiBPM: Result for CERN-PS



1. So far all methods use 
exclusively the amplitude 
information
(BTW: in the case of self 
excited oscillations this is 
the only way!)

2. But if you drive a betatron
oscillation of the beam 
oscillation through an 
external force, one can 
use the phase between 
the exciter and the beam 
response as observable

recall: Network analysis (BTF:=Beam transfer function)

CAS 2023 H.Schmickler
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BTF



Principle of PLL tune measurements

CAS 2023 H.Schmickler

Beam

VCO
Voltage controlled 

oscillator

A sin(wt)

BPM

B sin(wt+)

Phase detector (=product)

½*AB(cos()-cos(2 wt +))

Lowpass
Frequency control:

½*ABcos()

Due to cos () =0 at 

resonance this system 

“looks” to the 90 deg. 

point of the BTF

84VCO changes ω until control input ==0

Control system can read tune 
betatron tune at regular 
intervals by reading the VCO 
frequency

Recall: sin a sin b = 1/2 (cos(a − b) − cos(a + b))



Illustration of  PLL tune tracking

CAS 2023 
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A

q



q

Single carrier PLL locks 

on 900 point of BTF;
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Applied Frequency Shift 

 F (RF)

 Qh

 Qv

Q’ Measurement via RF-frequency modulation (momentum modulation)

Amplitude & sign of chromaticity

calculated from continuous tune plot
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Measurement example during  changes on very strong quadrupoles in 
the insertion: LEP -squeeze

CAS 2023 
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qh

qv

87



What is Wavelet Analysis ?

◼ And…what is a wavelet…?

A wavelet is a waveform of effectively limited duration that has an average 

value of zero.

In a Fourier transform (FT) we represent the data by the weighted sum of 

infinite sine waves with different frequencies.

So the “signal analyzing” functions are infinite sine waves.

In the continuous wavelet transform (CWT) we represent the data by the 

weighted sum of appropriately scaled and shifted wavelets.

So instead of only infinite sine waves we take frequency dependent wavelets 

(by scaling) and time dependent wavelets (by shifting)

as “two dimensional set of analyzing functions” 
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Wavelet Scaling

◼ Time stretching or frequency scaling:
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Wavelet Shifting
◼ Time shifting:



Wavelet Analysis by Shifting and Scaling
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• Pre-1930
– Joseph Fourier (1807) with his theories of frequency analysis

• The 1930s

– Using scale-varying basis functions; computing the energy of a 
function

• 1960-1980
– Guido Weiss and Ronald R. Coifman; Grossman and Morlet

• Post-1980
– Stephane Mallat; Y. Meyer; Ingrid Daubechies; wavelet applications 

today

Historical Development of wavelet 
transforms (main contributors)
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Various transforms

The variables in red are linked to frequency resolution, 
the variables in blue to time resolution.



COMPARSION in terms of  time and frequency resolution

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10
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Example (STFT vs WT)

In a continuously sampled sine wave two artefacts (value set to 0) are 
introduced at two different times.
In the result of the STFT (top trace: Spectrogram) there is no effect visible,
In the result of the WT (bottom trace: Scalogram) the location of the 
irregularities can be spotted.



• Stationary Signals:
windowed FFT with interpolation/fitting.

!!! Depending on the S/N the gain from very 
sophisticated methods needs to be evaluated!!!

• Time varying Signals:
- Good S/N + lots of data: STFT (spectrograms)

i.e. most of the accelerator applications
- Small S/N + few data: wavelets

possible case: instabilities at threshold

• Alternativly (if not complete spectral information is 
required): PLL tune tracking

Which tool to use?
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Summary
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• Single beam passage in a detector produces a signal with a continuous frequency spectrum. 
The shorter the bunch, the higher the frequency content.

• Repetitive bunch passages produce a line spectrum. The individual spectral lines  are called 
revolution harmonics.
Details of the bunch pattern, differences in bunch intensities etc. determine the final spectral 
distribution.

• Transverse or longitudinal oscillations of the bunch around the equilibrium produce sidebands 
around all revolution harmonics.

• These sidebands are used for the measurement of the betatron tunes and/or the synchrotron 
tune.

• The standard tool for obtaining spectral information is a Fourier transform (FFT) of time 
sampled signals.

• Windowing and interpolation allow measurements with higher frequency resolution.
• Spectograms or STFTs are consecutive FFTs of larger datasets, which allow to follow time 

varying spectra. A compromise has to be found between time resolution and frequency 
resolution.

• Phase locked loops can be used for continuous tune tracking, hence one obtains the time 
evolution of the main beam resonance (tune). No other spectral information!

• Wavelet analysis instead of Spectograms are an alternative analysis tool.
This is really useful in the case of few time samples.



Appendix I: Python Code for bunch 
pattern display
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• import numpy as np

• from numpy import fft

• import matplotlib.pyplot as plt

• N=16384

• NBUNCH=100

• sigmax = 0.5

• deltax=10

• T=1/N

• NLEFT=-50

• NRIGHT=50

• x1= np.linspace(NLEFT,N-NLEFT,N)

• xtime=np.linspace(NLEFT,NBUNCH*deltax + NRIGHT,N)

• IB=0

• y=NBUNCH*np.exp(-(x1*x1)/(2*sigmax*sigmax))

• ytime=NBUNCH*np.exp(-(xtime*xtime)/(2*sigmax*sigmax))

• y1=0

• y2=0

• y3=0

• ytime=0

• while True:

•

• y1=y1+np.exp(-(x1-IB*deltax)*(x1-IB*deltax)/(2*sigmax*sigmax))

• ytime=ytime+np.exp(-(xtime-IB*deltax)*(xtime-IB*deltax)/(2*sigmax*sigmax))

• IB=IB+1

• if IB==NBUNCH:

• break   

Appendix Ia: Python code for bunch pattern 
simulation 1st part

CAS 2023 H.Schmickler 99



• ffty=(fft.fft(y))

• ffty1=(fft.fft(y1))

• x2=np.linspace(0.0,500,N/2)

• y2=2.0*np.abs(ffty1[:N//2])/float(N)

• y3=2.0*np.abs(ffty[:N//2])/float(N)

• plt.rcParams["figure.figsize"] = [15,4]

• plt.subplot(1,2,1)

• plt.plot(xtime,ytime,'b-')

• plt.ylabel('amplitude')

• plt.xlabel('time [nsec]')

• plt.subplot (1,2,2)

• plt.plot (x2,y3,'r-')

• plt.plot (x2,y2,'b-')

• plt.ylabel('amplitude')

• plt.xlabel('frequency [MHz]')

• plt.tight_layout()

• plt.savefig (‘whatever.png')

• plt.show()

Appendix Ib: Python code for bunch pattern 
simulation 2nd part
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