
Numerical Methods and Computational Tools

Andrea Latina
andrea.latina@cern.ch

CAS - Introduction to Accelerator Physics - Santa Susanna, Spain - 2023

Table of contents

1. Introduction

• Purpose
• Some references

2. Internal representation of numbers

• Machine precision
• Numerical errors

• Round-off
• Cancellation
• Truncation

3. Tools

• Octave and Python
• Maxima
• Shell tools
• C++ and libraries

4. Accelerator physics codes

2/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Purpose of this course

In these two lessons, we will outline some fundamental concepts in scientific
computing and guide the novice through the multitude of tools available. We will
describe the main tools and explain which tool should be used for a specific
purpose, dispelling common misconceptions, and suggest good practices.

We will suggest reference readings and clarify important aspects of numerical
stability to help avoid making bad but unfortunately common mistakes.
Numerical stability should be basic knowledge of every scientist.

We will exclusively refer to free and open-source software running on Linux or
other Unix-like operating systems. Also, we will unveil powerful shell commands
that can speed up simulations, facilitate data processing, and in short, increase
your scientific throughput.

3/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Purpose of this course

In these two lessons, we will outline some fundamental concepts in scientific
computing and guide the novice through the multitude of tools available. We will
describe the main tools and explain which tool should be used for a specific
purpose, dispelling common misconceptions, and suggest good practices.

We will suggest reference readings and clarify important aspects of numerical
stability to help avoid making bad but unfortunately common mistakes.
Numerical stability should be basic knowledge of every scientist.

We will exclusively refer to free and open-source software running on Linux or
other Unix-like operating systems. Also, we will unveil powerful shell commands
that can speed up simulations, facilitate data processing, and in short, increase
your scientific throughput.

3/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Purpose of this course

In these two lessons, we will outline some fundamental concepts in scientific
computing and guide the novice through the multitude of tools available. We will
describe the main tools and explain which tool should be used for a specific
purpose, dispelling common misconceptions, and suggest good practices.

We will suggest reference readings and clarify important aspects of numerical
stability to help avoid making bad but unfortunately common mistakes.
Numerical stability should be basic knowledge of every scientist.

We will exclusively refer to free and open-source software running on Linux or
other Unix-like operating systems. Also, we will unveil powerful shell commands
that can speed up simulations, facilitate data processing, and in short, increase
your scientific throughput.

3/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Some references

1. “Numerical Recipes: The Art of Scientific Computing”, W. Press, S. Teukolsky, W.
Vetterling, and B. Flannery, 1992 (2nd edition) − 2007 (3rd edition)

2. Abramowitz and Stegun, “Handbook of Mathematical Functions with Formulas”, 1964

3. “The NIST Handbook of Mathematical Functions”, Olver, Lozier, Boisvert, and Clark,
2010

4. Donald Knuth, “The Art of Computer programming”, 1968 − (the book is still
incomplete)

5. Gradshteyn and Ryzhik, “Table of Integrals, Series, and Products” , Academic Press Inc;
8th edition (27 October 2014)

6. Particle Data Group (LBL), “Review of Particle Physics”, Oxford University Press

4/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Internal representation of numbers

Integers

• Int, or integer, is a whole number, positive or negative, without decimals. In binary format

• Typically, an integer occupies four bytes, or 32 bits.

• The possible range for 32-bit integers is

−231 < X < 231 − 1

(from -2,147,483,648 to 2,147,483,647).

5/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Internal representation of numbers

Integer types

• In compiled languages such as C and C++, specific types exist for better control:

Data Type Size Size in bytes Signed range

[un|signed] char 8 bits 1 -128 to 127

[un|signed] short int 16 bits 2 -32768 to 32767

[un|signed] int 32 bits 4 -2147483648 to 2147483647

[un|signed] long int 32 bits 4 -2147483648 to 2147483647

[un|signed] long long int 64 bits 8 −263 to 263 − 1

• Arithmetic between numbers in integer representation is
::::
exact, if the answer is not

outside the range of integers that can be represented.

6/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Internal representation of numbers

Real numbers

• Real numbers use a floating-point representation IEEE-754

value = (−1)sign × 1.fraction × 2exponent

• Single-precision floating point representation (32 bits)

The C/C++ type is float.

• Double-precision floating point representation (64 bits)

The C/C++ type is double.

Note: Some CPUs internally store floating point numbers in even higher precision: 80-bit in extended
precision, and 128-bit in quadruple precision. In C++ quad. precision may be specified using long double.

7/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Range of double-precision numbers

0 2x10308-2x10308

exponent

dmin

• 52 bits of mantissa correspond to about 15-digit precision in base 10. In single precision, there are just
7-digit precision in base 10.

• Double-precision numbers as integers are exact within the range ±253 (≈ ±1016).

• The smallest possible number that can be represented is dmin = 2−1074 ≈ 4.94 × 10−324

8/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special numbers

IEEE-754 floating-point types may support special values:

• zero

• the negative zero, −0.0. It compares equal to +0.0, but is meaningful in some arithmetic
operations, e.g. 1.0/-0.0 == -INFINITY

• infinity (positive and negative)

• Not-a-number (NaN), it’s the result for example of 0/0. A NaN does not compare equal
with anything (including itself)

C:
#include <math.h>
double f = INFINITY;
double nan = NAN;

C++:
#include <limits>
double f = std::numeric_limits<double>::infinity();
double qnan = std::numeric_limits<double>::quiet_NaN();
double snan = std::numeric_limits<double>::signaling_NaN();

Python:
f = numpy.inf
nan = numpy.nan

Octave:
f = inf;
n = nan;

9/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special numbers

IEEE-754 floating-point types may support special values:

• zero

• the negative zero, −0.0. It compares equal to +0.0, but is meaningful in some arithmetic
operations, e.g. 1.0/-0.0 == -INFINITY

• infinity (positive and negative)

• Not-a-number (NaN), it’s the result for example of 0/0. A NaN does not compare equal
with anything (including itself)

C:
#include <math.h>
double f = INFINITY;
double nan = NAN;

C++:
#include <limits>
double f = std::numeric_limits<double>::infinity();
double qnan = std::numeric_limits<double>::quiet_NaN();
double snan = std::numeric_limits<double>::signaling_NaN();

Python:
f = numpy.inf
nan = numpy.nan

Octave:
f = inf;
n = nan;

9/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Machine epsilon, εm

The machine epsilon, or accuracy, εm, is the gap between 1 and the next representable double.
The smallest double number such that:

1.0 + εm ̸= 1.0

• For double precision
εm = 2−52 ≈ 2 · 10−16,

• For single precision
εm = 2−23 ≈ 3 · 10−8.

Exercise: How much is
1020 + 1 − 1020 = ?

Note: It is important to understand that εm is not the smallest floating-point number that can

be represented on a machine.
The smallest number, dmin, depends on how many bits there are in the exponent. εm depends
on how many bits there are in the mantissa.

10/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Machine epsilon, εm

The machine epsilon, or accuracy, εm, is the gap between 1 and the next representable double.
The smallest double number such that:

1.0 + εm ̸= 1.0

• For double precision
εm = 2−52 ≈ 2 · 10−16,

• For single precision
εm = 2−23 ≈ 3 · 10−8.

Exercise: How much is
1020 + 1 − 1020 = ?

Note: It is important to understand that εm is not the smallest floating-point number that can

be represented on a machine.
The smallest number, dmin, depends on how many bits there are in the exponent. εm depends
on how many bits there are in the mantissa.

10/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Overflow and underflow

The Overflow occurs when an operation attempts to create a numeric value that is outside of
the range that can be represented with a given number of digits – either higher than the
maximum or lower than the minimum representable value.

The Underflow is a condition in a computer program where the result of a calculation is a
number of smaller absolute value than the computer can actually represent in memory.

11/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Round-off error

The round-off error, also called rounding error, is the difference between the exact result and
the result obtained using finite-precision, rounded arithmetic.

As an example of round-off error, see the representation of the number 0.1

[link]

Round-off errors accumulate with increasing amounts of calculation.

If, in the course of obtaining a calculated value, one performs N such arithmetic operations,
one might end up having a total round-off error on the order of

√
Nϵm (when lucky)

(Note: The square root comes from a random-walk, as the round-off errors come in randomly up or down.)

The golden rule: try to reduce the number of operations required to perform a calculation.

12/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Round-off error

The round-off error, also called rounding error, is the difference between the exact result and
the result obtained using finite-precision, rounded arithmetic.

As an example of round-off error, see the representation of the number 0.1

[link]

Round-off errors accumulate with increasing amounts of calculation.

If, in the course of obtaining a calculated value, one performs N such arithmetic operations,
one might end up having a total round-off error on the order of

√
Nϵm (when lucky)

(Note: The square root comes from a random-walk, as the round-off errors come in randomly up or down.)

The golden rule: try to reduce the number of operations required to perform a calculation.

12/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Round-off error

The round-off error, also called rounding error, is the difference between the exact result and
the result obtained using finite-precision, rounded arithmetic.

As an example of round-off error, see the representation of the number 0.1

[link]

Round-off errors accumulate with increasing amounts of calculation.

If, in the course of obtaining a calculated value, one performs N such arithmetic operations,
one might end up having a total round-off error on the order of

√
Nϵm (when lucky)

(Note: The square root comes from a random-walk, as the round-off errors come in randomly up or down.)

The golden rule: try to reduce the number of operations required to perform a calculation.
12/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Round-off error

Example
a = 0.7;

% how many iterations?

while a < 0.8

a = a + 0.1;
print a;

endwhile

Or even just : is 0.2 + 0.1 == 0.3 ? Try...

→ Most decimal numbers don’t have exact binary representations.

13/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Then, how can we compare floating-point numbers?

If 0.2 + 0.1 != 0.3, how can we assert if two numbers a and b are equal?

Floating point numbers can only be approximately equal.

We need to define the accepted relative, ϵrel, and an absolute, ϵabs, errors. Then,

a == b ?



if a == b

return true

if |a − b| < max (ϵabs, ϵrel · (|a|+ |b|))
return true

otherwise

return false

where ϵrel ≥ ϵm.

14/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error

Cancellation error: when one adds two numbers with opposite sign but with similar absolute
values. The result may be quite inexact and the situation is referred to as loss, or cancellation,
of significant digits.

One encounters this type of error for example in polynomial evaluation.

Example:

f (x) = (x − 1)6

= x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1

-6x10-15

-4x10-15

-2x10-15

 0

 2x10-15

 4x10-15

 6x10-15

 8x10-15

 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004

f(
x
)

x

x**6 -6*x**5 +15*x**4 -20*x**3 +15*x**2 -6*x +1

15/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error

Cancellation error: when one adds two numbers with opposite sign but with similar absolute
values. The result may be quite inexact and the situation is referred to as loss, or cancellation,
of significant digits.

One encounters this type of error for example in polynomial evaluation.

Example:

f (x) = (x − 1)6

= x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1

-6x10-15

-4x10-15

-2x10-15

 0

 2x10-15

 4x10-15

 6x10-15

 8x10-15

 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004

f(
x
)

x

x**6 -6*x**5 +15*x**4 -20*x**3 +15*x**2 -6*x +1

15/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error (a.k.a. “Catastrophic” cancellation error)

Cancellation error: when one adds two numbers with opposite sign but with similar absolute
values. The result may be quite inexact and the situation is referred to as loss, or cancellation,
of significant digits.

One encounters this type of error for example in polynomial evaluation.

Example:

f (x) = (x − 1)6

= x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1

-6x10-15

-4x10-15

-2x10-15

 0

 2x10-15

 4x10-15

 6x10-15

 8x10-15

 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004

f(
x
)

x

x**6 -6*x**5 +15*x**4 -20*x**3 +15*x**2 -6*x +1
(x-1)**6

16/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies...

Few cases are recurrent and dangerous...

1. Case of the quadratic formula:
ax2 + bx + c = 0

Recall the solution from high school. If the solutions are written this way, cancellation can
occur:

r1 =
−b +

√
b2 − 4ac
2a

r2 =
−b −

√
b2 − 4ac
2a

The remedy is to rewrite r1 and r2 to avoid cancellation:

• r1: if b2 ≫ ac and b > 0, use r1 =
2c

−b −
√

b2 − 4ac

• r2: if b2 ≫ ac and b < 0, use r2 =
2c

−b +
√

b2 − 4ac

17/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies...

Few cases are recurrent and dangerous...

1. Case of the quadratic formula:
ax2 + bx + c = 0

Recall the solution from high school. If the solutions are written this way, cancellation can
occur:

r1 =
−b +

√
b2 − 4ac
2a

r2 =
−b −

√
b2 − 4ac
2a

The remedy is to rewrite r1 and r2 to avoid cancellation:

• r1: if b2 ≫ ac and b > 0, use r1 =
2c

−b −
√

b2 − 4ac

• r2: if b2 ≫ ac and b < 0, use r2 =
2c

−b +
√

b2 − 4ac

17/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies... [example]

1. Case of the quadratic formula:
ax2 + bx + c = 0

Let’s take an example: a = 10−20, b = 1, c = 1

• r1 = 2c
−b−

√
b2−4ac

= 2
−1−

√
1−4·10−20

= −1 [ALMOST CORRECT]

• r2 =
−b−

√
b2−4ac

2a =
−1−

√
1−4·10−20

10−20 = −1020 [ALMOST CORRECT]

Choosing the other formulation:

• r1 =
−b+

√
b2−4ac

2a =
−1+

√
1−4·10−20

10−20 = 0 [WRONG!]

• r2 = 2c
−b+

√
b2−4ac

= 2
−1+

√
1−4·10−20

= ∞ [WRONG!]

18/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies... [example]

1. Case of the quadratic formula:
ax2 + bx + c = 0

Let’s take an example: a = 10−20, b = 1, c = 1

• r1 = 2c
−b−

√
b2−4ac

= 2
−1−

√
1−4·10−20

= −1 [ALMOST CORRECT]

• r2 =
−b−

√
b2−4ac

2a =
−1−

√
1−4·10−20

10−20 = −1020 [ALMOST CORRECT]

Choosing the other formulation:

• r1 =
−b+

√
b2−4ac

2a =
−1+

√
1−4·10−20

10−20 = 0 [WRONG!]

• r2 = 2c
−b+

√
b2−4ac

= 2
−1+

√
1−4·10−20

= ∞ [WRONG!]

18/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies... [example]

1. Case of the quadratic formula:
ax2 + bx + c = 0

Let’s take an example: a = 10−20, b = 1, c = 1

• r1 = 2c
−b−

√
b2−4ac

= 2
−1−

√
1−4·10−20

= −1 [ALMOST CORRECT]

• r2 =
−b−

√
b2−4ac

2a =
−1−

√
1−4·10−20

10−20 = −1020 [ALMOST CORRECT]

Choosing the other formulation:

• r1 =
−b+

√
b2−4ac

2a =
−1+

√
1−4·10−20

10−20 = 0 [WRONG!]

• r2 = 2c
−b+

√
b2−4ac

= 2
−1+

√
1−4·10−20

= ∞ [WRONG!]

18/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies...

Catastrophic cancellation can occur in the evaluation of expressions like:

2. Algebraic binomials, e.g.
x2 − y2

can incur in underflow errors if y2 ≪ x2 (when y2/x2 < εm). This expression is more
accurately evaluated as

(x + y) (x − y)

3. Summations of many numbers of very large different magnitude. There are two solutions:

1. Sort the numbers by abs(magnitude) and sum from the smallest to the largest

2. “Kahan summation” algorithm

19/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Cancellation error: remedies...

Catastrophic cancellation can occur in the evaluation of expressions like:

2. Algebraic binomials, e.g.
x2 − y2

can incur in underflow errors if y2 ≪ x2 (when y2/x2 < εm). This expression is more
accurately evaluated as

(x + y) (x − y)

3. Summations of many numbers of very large different magnitude. There are two solutions:

1. Sort the numbers by abs(magnitude) and sum from the smallest to the largest

2. “Kahan summation” algorithm

19/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Another example of catastrophic cancellation

Suppose we want to compute the value of the function

f (x) =
1 − cos x

x2

for x very close to 0, say x = 10−8.
(Remember: cos x ≃ 1 − x2

2 + x4

24 + . . .)

We can compute this value directly using a computer program as follows:

x = 1e-8
numerator = 1 - cos(x)
denominator = x**2
result = numerator/denominator
print(result)

This program should print out a value very close to 0.5. However, due to catastrophic
cancellation error, the result may be significantly different (0, in fact).

20/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

Transcendental functions are compiuted by the CPU (FPU) using Taylor expansions. E.g., the
logarithm:

log (x) = (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ . . .

which makes the function incur in cancellation whenever x < εm.

log1p(x)

To overcome this problem, the C standard library, as well as Octave and Python, provide the
function log1p, which implements

log1p(x) = log (1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ . . .

this is numerically stable. So, whenever the argument of a logarithm is in the form 1 + x , use
log1p.

expm1(x) = ex − 1, is similar.

Functions like: 1 − cos (x), 1 − cosh (x), require a similar approach, but there is no pre-defined
solution.

21/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

Transcendental functions are compiuted by the CPU (FPU) using Taylor expansions. E.g., the
logarithm:

log (x) = (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ . . .

which makes the function incur in cancellation whenever x < εm.

log1p(x)

To overcome this problem, the C standard library, as well as Octave and Python, provide the
function log1p, which implements

log1p(x) = log (1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ . . .

this is numerically stable. So, whenever the argument of a logarithm is in the form 1 + x , use
log1p.

expm1(x) = ex − 1, is similar.

Functions like: 1 − cos (x), 1 − cosh (x), require a similar approach, but there is no pre-defined
solution.

21/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

Transcendental functions are compiuted by the CPU (FPU) using Taylor expansions. E.g., the
logarithm:

log (x) = (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ . . .

which makes the function incur in cancellation whenever x < εm.

log1p(x)

To overcome this problem, the C standard library, as well as Octave and Python, provide the
function log1p, which implements

log1p(x) = log (1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ . . .

this is numerically stable. So, whenever the argument of a logarithm is in the form 1 + x , use
log1p.

expm1(x) = ex − 1, is similar.

Functions like: 1 − cos (x), 1 − cosh (x), require a similar approach, but there is no pre-defined
solution.

21/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Take for example the transfer matrix of a sector bend,

Mdipole =



cos θ ρ sin θ 0 0 0 ρ (1 − cos θ)

− 1
ρ
sin θ cos θ 0 0 0 sin θ

0 0 1 L 0 0
0 0 0 1 0 0

− sin θ −ρ (1 − cos θ) 0 0 1 ρ (θ − sin θ)

0 0 0 0 0 1



where θ = L
ρ
, L is the magnet’s length, and ρ is the bending radius.

22/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

hypot(a, b)

provides a numerically stable implementation of

c =
√

a2 + b2

which causes cancellation when |a| ≪ |b| or |b| ≪ |a| .

Example, E , total energy of a particle:

E = hypot(mass, P)

[hypot(a,b), which is part of the C (C++, Python, Octave) standard library, computes instead: c = m ·
√

1 + (M/m)2 where m = min (|a| , |b|),

M = max (|a| , |b|).]

What about: pow(x, y) = xy ?

pow(x,y) = exp (log xy) = exp (y log x)

It’s computationally expensive and inaccurate. Avoid for y ∈ integers.

23/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

hypot(a, b)

provides a numerically stable implementation of

c =
√

a2 + b2

which causes cancellation when |a| ≪ |b| or |b| ≪ |a| .

Example, E , total energy of a particle:

E = hypot(mass, P)

[hypot(a,b), which is part of the C (C++, Python, Octave) standard library, computes instead: c = m ·
√

1 + (M/m)2 where m = min (|a| , |b|),

M = max (|a| , |b|).]

What about: pow(x, y) = xy ?

pow(x,y) = exp (log xy) = exp (y log x)

It’s computationally expensive and inaccurate. Avoid for y ∈ integers.

23/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

hypot(a, b)

provides a numerically stable implementation of

c =
√

a2 + b2

which causes cancellation when |a| ≪ |b| or |b| ≪ |a| .

Example, E , total energy of a particle:

E = hypot(mass, P)

[hypot(a,b), which is part of the C (C++, Python, Octave) standard library, computes instead: c = m ·
√

1 + (M/m)2 where m = min (|a| , |b|),

M = max (|a| , |b|).]

What about: pow(x, y) = xy ?

pow(x,y) = exp (log xy) = exp (y log x)

It’s computationally expensive and inaccurate. Avoid for y ∈ integers.

23/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Special built-in mathematical functions

hypot(a, b)

provides a numerically stable implementation of

c =
√

a2 + b2

which causes cancellation when |a| ≪ |b| or |b| ≪ |a| .

Example, E , total energy of a particle:

E = hypot(mass, P)

[hypot(a,b), which is part of the C (C++, Python, Octave) standard library, computes instead: c = m ·
√

1 + (M/m)2 where m = min (|a| , |b|),

M = max (|a| , |b|).]

What about: pow(x, y) = xy ?

pow(x,y) = exp (log xy) = exp (y log x)

It’s computationally expensive and inaccurate. Avoid for y ∈ integers.

23/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Summary of special built-in mathematical functions

log1p(x) = log (1 + x)

expm1(x) = ex − 1

hypot(x,y) =
√

x2 + y2

sqrt(x) =
√

x , square root of x .

cbrt(x) = 1/3√x , cube root of x .

scalbn(x,n) returns x · 2n computed by exponent manipulation.

atan2(y,x) = arctan
(y

x

)
with detection of the correct quadrant.

fabs(x) computes the absolute value of a floating-point number x .

floor(x) returns the largest integral value less than or equal to x .

ceil(x) returns the smallest integral value greater than or equal to x .

round(x) returns the integral value nearest to x .

trunc(x) returns the integral value nearest to but no larger in magnitude than x .

pow(x,y) = ey log x , computes floating-point number x raised to the power of
floating-point number y .

24/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Implementation of functions: an example

Sin cardinal
Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)

x otherwise.

Numerical instabilities might appear due to the division between two nearly-zero numbers. For
x = 0, the result is Nan. A robust implementation of the sinus cardinal comes from a careful
consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x

≈ 1 −
x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√

6 εm.

25/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Implementation of functions: an example

Sin cardinal
Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)

x otherwise.

Numerical instabilities might appear due to the division between two nearly-zero numbers. For
x = 0, the result is Nan. A robust implementation of the sinus cardinal comes from a careful
consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x

≈ 1 −
x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√

6 εm.

25/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Implementation of functions: an example

Sin cardinal
Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)

x otherwise.

Numerical instabilities might appear due to the division between two nearly-zero numbers. For
x = 0, the result is Nan. A robust implementation of the sinus cardinal comes from a careful
consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x

≈ 1 −
x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√

6 εm.
25/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Truncation error

Finite differentiation

Imagine that you have a procedure which computes a function f (x), and now you want to
compute its derivative f ′(x). Easy, right? The definition of the derivative,

f ′ (x) = lim
h→0

f (x + h)− f (x)
h

practically suggests the program: Pick a small value h; evaluate f (x + h) and f (x), finally apply
the above equation.

Applied uncritically, the above procedure is almost guaranteed to produce inaccurate results.
There are two sources of error in equation: the truncation error and the round-off error.

Let’s focus on the truncation error now, we know that

f (x + h) = f (x) + hf ′ (x) +
1
2

h2f ′′ (x) + . . .

(Taylor expansion), therefore
f (x + h)− f (x)

h
= f ′ +

1
2

hf ′′ + . . .

Then, when we approximate f ′ as in the above equation, we make a truncation error:

εt =
1
2

hf ′′ + . . . = O(h)

In this case, the truncation error is linearly proportional to h. Higher-order formulations of the
first derivative give smaller error.

26/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Truncation error

Finite differentiation

Imagine that you have a procedure which computes a function f (x), and now you want to
compute its derivative f ′(x). Easy, right? The definition of the derivative,

f ′ (x) = lim
h→0

f (x + h)− f (x)
h

practically suggests the program: Pick a small value h; evaluate f (x + h) and f (x), finally apply
the above equation.

Applied uncritically, the above procedure is almost guaranteed to produce inaccurate results.
There are two sources of error in equation: the truncation error and the round-off error.

Let’s focus on the truncation error now, we know that

f (x + h) = f (x) + hf ′ (x) +
1
2

h2f ′′ (x) + . . .

(Taylor expansion), therefore
f (x + h)− f (x)

h
= f ′ +

1
2

hf ′′ + . . .

Then, when we approximate f ′ as in the above equation, we make a truncation error:

εt =
1
2

hf ′′ + . . . = O(h)

In this case, the truncation error is linearly proportional to h. Higher-order formulations of the
first derivative give smaller error.26/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Example of finite difference formulæ

• First derivative to first order (forward difference):

f ′ (x) =
f (x + h)− f (x)

h
+ O (h)

• First derivative to second order (centred difference):

f ′ (x) =
f (x + h)− f (x − h)

2h
+ O

(
h2
)

• First derivative to fourth order (centred difference):

f ′ (x) =
−fx+2h + 8fx+h − 8fx−h + fx−2h

12h
+ O

(
h4
)

• Second derivative to second order (centred difference):

f ′′ (x) =
fx+h − 2fx + fx−h

h2 + O
(
h2
)

• Second derivative to fourth order (centred difference):

f ′′ (x) =
−fx+2h + 16fx+h − 30fx + 16fx−h − fx−2h

12h2 + O
(
h4
)

27/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Finite difference formulæ

Abramowitz and Stegun, page 883 and following

28/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Finite difference formulæ

Abramowitz and Stegun, page 883 and following

29/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Finite difference formulæ

Abramowitz and Stegun, page 883 and following

30/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Numerical integration (or “quadrature”)

Newton-Cotes formulas of the closed type, for functions sampled at equidistant points.

For {i ∈ N | 0 ≤ i ≤ n}, let xi = a + i b−a
n = a + i h, and fi = f (xi): then the integral can be approximated

with a sum ∫ b

a
f (x) dx ≈

n∑
i=0

wi f (xi)

where:

n Step size h Common name Formula Error

1 b − a Trapezoidal rule
h
2
(f0 + f1) −

1
12

h3f (2)(ξ)

2 b−a
2 Simpson’s rule

h
3
(f0 + 4f1 + f2) −

1
90

h5f (4)(ξ)

3 b−a
3 Simpson’s 3/8 rule

3h
8

(f0 + 3f1 + 3f2 + f3) −
3
80

h5f (4)(ξ)

4 b−a
4 Boole’s rule

2h
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4) −
8

945
h7f (6)(ξ)

31/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Numerical integration (or “quadrature”)

Newton-Cotes formulas of the closed type, for functions sampled at equidistant points.

For {i ∈ N | 0 ≤ i ≤ n}, let xi = a + i b−a
n = a + i h, and fi = f (xi): then the integral can be approximated

with a sum ∫ b

a
f (x) dx ≈

n∑
i=0

wi f (xi)

where:

n Step size h Common name Formula Error

1 b − a Trapezoidal rule
h
2
(f0 + f1) −

1
12

h3f (2)(ξ)

2 b−a
2 Simpson’s rule

h
3
(f0 + 4f1 + f2) −

1
90

h5f (4)(ξ)

3 b−a
3 Simpson’s 3/8 rule

3h
8

(f0 + 3f1 + 3f2 + f3) −
3
80

h5f (4)(ξ)

4 b−a
4 Boole’s rule

2h
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4) −
8

945
h7f (6)(ξ)

31/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Numerical integration /II

For a function that is known analytically but cannot be integrated, one can use the
Gauss-Legendre integration.

∫ b

a
f (x) dx ≈

n∑
i=0

wi f (xi)

where:

• the function is defined in the interval [−1, 1]

• wi =
2

(1 − xi)
2 [P′

n (xi)]
2

• Pn (x) are the Legendre polynomials, normalised such that Pn (1) = 1

• xi is the i-th root of Pn

32/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Numerical integration /III

Abramowitz and Stegun suggest a generalisation to address different cases:

∫ b

a
ω (x) f (x) dx ≈

n∑
i=0

wi f (xi)

where:

• ω (x) is positive weight function

• wi depend on the method used

• xi is the i-th root of Pn

For more details see A & S.
33/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Random numbers

Random number generators are widely used in numerical physics. They are at the base of each
Monte Carlo technique and are often the only practical way to evaluate difficult integrals or to
sample random variables governed by complicated probability density functions.

It might seem impossible to produce random numbers through deterministic algorithms.
Nevertheless, computer “random number generators” are in everyday use. Oftentimes,
computer-generated sequences are called Pseudo-random, while the word random is reserved
for the output of an intrinsically random physical process, like the elapsed time between clicks of
a Geiger counter placed next to a sample of some radioactive element. Entire books have been
dedicated to this topic, most notably Knuth’s “The Art of Computer Programming, Volume 2:
Seminumerical Algorithms”. They are based on the idea generating a sequence from a “seed”.

There exist also Quasi-random sequences are sequences that progressively cover a
N-dimensional space with a set of points that are uniformly distributed. Quasi-random
sequences are also known as low-discrepancy sequences. Unlike pseudo-random sequences,
quasi-random sequences fail many statistical tests for randomness. Approximating true
randomness, however, is not their goal. Quasi-random sequences seek to fill space uniformly
and do so so that initial segments approximate this behaviour up to a specified density.

34/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Psuedo-random numbers

An implementation of Donald E. Knuth’s “Super-random” number generator given as an
educational example of a (bad) pseudo random number generator in chapter 3.1 of his “The
Art of Computer programming, Volume 2” book.

35/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Quasi-random numbers

There exist several algorithm to generate quasi-random numbers. For instance, the Halton and
reverse Halton sequence, described in J.H. Halton, Numerische Mathematik, 2, 84-90 (1960)
and B. Vandewoestyne and R. Cools, Computational and Applied Mathematics, 189, 1&2,
341-361 (2006), valid up to 1229 dimensions.

36/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Quasi-random vs Pseudo-random numbers

37/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Quasi-random vs Pseudo-random numbers

38/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Monte Carlo integration in many dimensions

We mentioned integration using quadrature formulae. For multi-dimensional functions, the
most effective solution is to use a Monte Carlo integration:

I =
∫∫∫∫

f (x , y , z , t, u, v ,w) dV

where dV is the multi-dimensional volume element.

I = V × ⟨f (x , y , z , t, u, v ,w)⟩

Here,V =
∫∫∫∫

dV is the volume of the entire domain, and

⟨f (x , y , z , t, u, v ,w)⟩

is the average function over such a domain, sampled uniformly over each dimension.

Quasi-random numbers help to sample the domain while introducing minimal numerical noise.

39/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Quasi-random generator

Example of Quasi-random generator for Octave, based on GSL (Gnu Scientific Library)

$ mkoctfile qrand.cc -o qrand.oct

40/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Exact and arbitrary-precision numbers

In cases where double-, extended- or even quadruple-precision are not enough, there exist a
couple of solutions to achieve higher precision and in some cases even exact results.

• Symbolic calculation is the “holy grail” of exact calculations.

Programs such as Maxima, Mathematica©, or
Maple©, know the rules of math and represents
data as symbols rather rounded numbers. It is
free software released under the terms of the GNU
General Public License (GPL). An excellent front
end for Maxima is wxMaxima

• Arbitrary-precision arithmetic can be achieved using dedicated libraries that can handle
arbitrary, user-defined precision such as GMP, the GNU Multiple Precision Arithmetic
Library for the C and C++ programming languages.

41/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Python vs Octave

Python is described as “A clear and powerful object-oriented programming language,
comparable to Perl, Ruby, Scheme, or Java”. Python is a general purpose programming
language created by Guido Van Rossum.

Libraries such as numpy, matplotlib, pandas offer many functionalities that make it similar to
MATLAB and Octave.

Octave is detailed as “A programming language for scientific computing”. It is software
featuring a high-level programming language, primarily intended for numerical computations.
Octave helps in solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with MATLAB.

https://www.octave.org

https://octave.sourceforge.io

42/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.octave.org
https://octave.sourceforge.io

Tools: Python vs Octave

Python is described as “A clear and powerful object-oriented programming language,
comparable to Perl, Ruby, Scheme, or Java”. Python is a general purpose programming
language created by Guido Van Rossum.

Libraries such as numpy, matplotlib, pandas offer many functionalities that make it similar to
MATLAB and Octave.

Octave is detailed as “A programming language for scientific computing”. It is software
featuring a high-level programming language, primarily intended for numerical computations.
Octave helps in solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with MATLAB.

https://www.octave.org

https://octave.sourceforge.io

42/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.octave.org
https://octave.sourceforge.io

Tools: Python vs Octave

Python is described as “A clear and powerful object-oriented programming language,
comparable to Perl, Ruby, Scheme, or Java”. Python is a general purpose programming
language created by Guido Van Rossum.

Libraries such as numpy, matplotlib, pandas offer many functionalities that make it similar to
MATLAB and Octave.

Octave is detailed as “A programming language for scientific computing”. It is software
featuring a high-level programming language, primarily intended for numerical computations.
Octave helps in solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with MATLAB.

https://www.octave.org

https://octave.sourceforge.io

42/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.octave.org
https://octave.sourceforge.io

Tools: Python vs Octave, which one?

«Both Python and Octave are commonly used for scientific computing, but there are some
differences between them that may make one a better choice depending on the specific needs
of a project.

Python is a more general-purpose programming language with a wide range of libraries and
frameworks that can be used for scientific computing. Some of the most popular libraries for
scientific computing in Python include NumPy, SciPy, Pandas, and Matplotlib. Python also has
a large and active community of developers, which means that it is easier to find support,
resources, and tools.

Octave, on the other hand, is specifically designed for numerical and scientific computing, with
a syntax that is similar to MATLAB. Octave has built-in support for matrix operations and
linear algebra, making it well-suited for numerical computations. Octave is also open-source,
which means that it is freely available and can be modified and distributed as needed.

In general, if your project requires a more general-purpose language or if you need access to a
wide range of libraries and tools beyond just scientific computing, then Python may be the
better choice. However, if your project is primarily focused on numerical computations, then
Octave may be more appropriate. Ultimately, the choice between Python and Octave will
depend on the specific needs and goals of your project.»

43/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Octave

Example: impact of nonlinear elements on linear optics

44/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Octave simulation

45/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Symbolic computation

Maxima (and wxMaxima)

Maxima is a computer algebra system with a long
history. It is based on a 1982 version of Macsyma.

It is written in Common Lisp and runs on all POSIX
platforms such as macOS, Unix, BSD, and Linux, as
well as under Microsoft Windows and Android.

It is free software released under the terms of the
GNU General Public License (GPL). It is a valid al-
ternative to commercial alternatives, and offers some
advantage.

wxMaxima is an excellent front end for Maxima.

Octave and Python

Symbolic computations can also be performed within Octave and Python. Dedicated packages
add the possibility to perform basic symbolic computations, including common Computer
Algebra System tools such as algebraic operations, calculus, equation solving, Fourier and
Laplace transforms, variable precision arithmetic and other features, in scripts.

46/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Symbolic computation

Maxima (and wxMaxima)

Maxima is a computer algebra system with a long
history. It is based on a 1982 version of Macsyma.

It is written in Common Lisp and runs on all POSIX
platforms such as macOS, Unix, BSD, and Linux, as
well as under Microsoft Windows and Android.

It is free software released under the terms of the
GNU General Public License (GPL). It is a valid al-
ternative to commercial alternatives, and offers some
advantage.

wxMaxima is an excellent front end for Maxima.

Octave and Python

Symbolic computations can also be performed within Octave and Python. Dedicated packages
add the possibility to perform basic symbolic computations, including common Computer
Algebra System tools such as algebraic operations, calculus, equation solving, Fourier and
Laplace transforms, variable precision arithmetic and other features, in scripts.

46/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Symbolic computation

A 1D harmonic oscillator with wxMaxima

47/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Symbolic computation

FODO cell in wxMaxima

48/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Symbolic computation

The Octave “symbolic” package

The Python “sympy” library

49/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Tools: Symbolic computation

The Octave “symbolic” package

The Python “sympy” library

49/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Shell scientific tools

units

The ability to evaluate complex expressions involving units makes many computations easy to
do, and the checking for compatibility of units guards against errors frequently made in
scientific calculations. Units is a conversion program, but also calculator with units.

• Example 1: average beam power,
bunch charge 300 pC, 15 GeV energy, 50 Hz repetition rate:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444444444444444) W

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

In bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

2

• Example 2: beam size at the interaction point of an electron-positron collider,
σ =

√
β⋆ · εgeometric, with β⋆ = 1 mm, εnormalized = 5 nm, E = 1.5 TeV:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444) W

1 You have: sqrt(0.001m * 5nm * electronmass c^2 / 1.5 TeV)
2 You want: nm
3 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = 1.305116 nm
4 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = (1 / 0.766214) nm

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

50/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Shell scientific tools

units

The ability to evaluate complex expressions involving units makes many computations easy to
do, and the checking for compatibility of units guards against errors frequently made in
scientific calculations. Units is a conversion program, but also calculator with units.

• Example 1: average beam power,
bunch charge 300 pC, 15 GeV energy, 50 Hz repetition rate:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444444444444444) W

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

In bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

2

• Example 2: beam size at the interaction point of an electron-positron collider,
σ =

√
β⋆ · εgeometric, with β⋆ = 1 mm, εnormalized = 5 nm, E = 1.5 TeV:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444) W

1 You have: sqrt(0.001m * 5nm * electronmass c^2 / 1.5 TeV)
2 You want: nm
3 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = 1.305116 nm
4 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = (1 / 0.766214) nm

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

50/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

An anecdote on units errors...

51/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

An anecdote on units errors...

Another page gives more details:

Easy, with units:

52/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Shell scientific tools: arbitrary precision

bc

It’s a programmable shell calculator that supports arbitrary-precision numbersIn bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

1 $ bc
2 bc 1.06
3 Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
4 This is free software with ABSOLUTELY NO WARRANTY.
5 For details type ‘warranty’.
6 scale=1
7 sqrt(2)
8 1.4
9 scale=40

10 sqrt(2)
11 1.4142135623730950488016887242096980785696

1 Suggested literature
There are a number of classic books that every scientist dealing with numerical calculations should know.
Here we list some of our favourites:

– Donald Knuth, “The Art of Computing programming”, is a comprehensive monograph written
by computer scientist Donald Knuth that covers many kinds of programming algorithms and their
analysis. Knuth began the project, originally conceived as a single book with twelve chapters, in
1962. The four volumes are:

Volume 1 – Fundamental Algorithms: Basic concepts, Information structures
Volume 2 - Seminumerical Algorithms: Random numbers, Arithmetic
Volume 3 – Sorting and searching: Sorting, Searching
Volume 4 - Combinatorial searching: Combinatoiral searching.

En passant, Donald Knuth is the creator of TEX, the typesetting system at the base of LATEX.
– W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical Recipes: The Art of Sci-

entific Computing”, is a complete text and reference book on scientific computing. In a self-
contained manner it proceeds from mathematical and theoretical considerations to actual practical
computer routines. Even though its routines are nowadays available in libraries such as GSL
or NAG, this book remains the most practical, comprehensive handbook of scientific computing
available today. Cambridge University Press.

– Abramowitz and Stegun, “Handbook of Mathematical Functions with Formulas”. Since it was
first published in 1964, the 1046-page Handbook has been one of the most comprehensive sources
of information on special functions, containing definitions, identities, approximations, plots, and
tables of values of numerous functions used in virtually all fields of applied mathematics.
At the time of its publication, the Handbook was an essential resource for practitioners. Nowa-
days, computer algebra systems have replaced the function tables, but the Handbook remains an
important reference source for finite difference methods, numerical integration, etc.
A high quality scan of the book is available at the University of Birmingham, UK [link].

– Olver, F. , Lozier, D. , Boisvert, R. and Clark, C. (2010), “The NIST Handbook of Mathematical
Functions”. This is a modern version of the Abramowitz-Stegun, and is comprehensive collection
of mathematical functions, from elementary trigonometric functions to the multitude of special
functions.

– Zyla, P. A., et al., “Review of Particle Physics”, Oxford University Press. s. A huse summary of
particle physics, enriched with extremely useful reviews of topics such as particle-matter interac-
tion, probability, Monte Carlo techniques, and statistics.

– George B. Arfken, “Mathematical Methods for Physicists”. This is a thorough handbook about
mathematics that is useful in physics. It is a venerable book that goes back to 1966; this seventh

3

The variable “scale” allows one to select the total number of decimal digits after the decimal

gnuplot

It’s a portable command-line-driven graphing utility originally created to allow scientists and students to
visualise mathematical functions and data interactively. It has grown to support many non-interactive uses.
It implements excellent fitting routines.

53/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Shell scientific tools: arbitrary precision

bc

It’s a programmable shell calculator that supports arbitrary-precision numbersIn bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

1 $ bc
2 bc 1.06
3 Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
4 This is free software with ABSOLUTELY NO WARRANTY.
5 For details type ‘warranty’.
6 scale=1
7 sqrt(2)
8 1.4
9 scale=40

10 sqrt(2)
11 1.4142135623730950488016887242096980785696

1 Suggested literature
There are a number of classic books that every scientist dealing with numerical calculations should know.
Here we list some of our favourites:

– Donald Knuth, “The Art of Computing programming”, is a comprehensive monograph written
by computer scientist Donald Knuth that covers many kinds of programming algorithms and their
analysis. Knuth began the project, originally conceived as a single book with twelve chapters, in
1962. The four volumes are:

Volume 1 – Fundamental Algorithms: Basic concepts, Information structures
Volume 2 - Seminumerical Algorithms: Random numbers, Arithmetic
Volume 3 – Sorting and searching: Sorting, Searching
Volume 4 - Combinatorial searching: Combinatoiral searching.

En passant, Donald Knuth is the creator of TEX, the typesetting system at the base of LATEX.
– W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical Recipes: The Art of Sci-

entific Computing”, is a complete text and reference book on scientific computing. In a self-
contained manner it proceeds from mathematical and theoretical considerations to actual practical
computer routines. Even though its routines are nowadays available in libraries such as GSL
or NAG, this book remains the most practical, comprehensive handbook of scientific computing
available today. Cambridge University Press.

– Abramowitz and Stegun, “Handbook of Mathematical Functions with Formulas”. Since it was
first published in 1964, the 1046-page Handbook has been one of the most comprehensive sources
of information on special functions, containing definitions, identities, approximations, plots, and
tables of values of numerous functions used in virtually all fields of applied mathematics.
At the time of its publication, the Handbook was an essential resource for practitioners. Nowa-
days, computer algebra systems have replaced the function tables, but the Handbook remains an
important reference source for finite difference methods, numerical integration, etc.
A high quality scan of the book is available at the University of Birmingham, UK [link].

– Olver, F. , Lozier, D. , Boisvert, R. and Clark, C. (2010), “The NIST Handbook of Mathematical
Functions”. This is a modern version of the Abramowitz-Stegun, and is comprehensive collection
of mathematical functions, from elementary trigonometric functions to the multitude of special
functions.

– Zyla, P. A., et al., “Review of Particle Physics”, Oxford University Press. s. A huse summary of
particle physics, enriched with extremely useful reviews of topics such as particle-matter interac-
tion, probability, Monte Carlo techniques, and statistics.

– George B. Arfken, “Mathematical Methods for Physicists”. This is a thorough handbook about
mathematics that is useful in physics. It is a venerable book that goes back to 1966; this seventh

3

The variable “scale” allows one to select the total number of decimal digits after the decimal

gnuplot

It’s a portable command-line-driven graphing utility originally created to allow scientists and students to
visualise mathematical functions and data interactively. It has grown to support many non-interactive uses.
It implements excellent fitting routines.

53/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Useful linux tools

Use of named pipes for interprocess communication (FIFOs)

Let’s see how to create and use a named pipe:

Notice the special file type designation of "p" and the file length of zero. You can write to a named pipe by
redirecting output to it and the length will still be zero.

So far, so good, but hit return and nothing much happens. While it might not be obvious, your text has
entered into the pipe, but you’re still peeking into the input end of it. You or someone else may be sitting at
the output end and be ready to read the data that’s being poured into the pipe, now waiting for it to be read.

Once read, the contents of the pipe are gone.

54/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

A word about the choice of units...

The International System (SI) wasn’t created for accelerator applications. The beam size isn’t
of the order of meters, the force shouldn’t be expressed in Newtons.

Example:

Let’s compute the force exerted by one of the LHC superconductive dipoles, in Newton:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: c * e * 8.5 T
3 You want: N
4 c * e * 8.5 T = 4.082724005684724e-10 N
5 c * e * 8.5 T = (1 / 2449345090.698306) N

1 You have: c * e * 8.5 T
2 You want: MeV/m
3 c * e * 8.5 T = 2548.235893 MeV/m
4 c * e * 8.5 T = (1 / 0.0003924283472919436) MeV/m

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

Example of “practical” units:

quantity units quantity units quantity units

position mm energy MeV momentum MeV/c

angles mrad time mm/c force MeV/m

In fact,

55/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

A word about data files...

An example of questionable choice:

In C, use:

printf(“%.17g\n”, x);

In C++, use:

std::cout <‌< std::setprecision(17) <‌< x <‌< std::endl;

...to preserve information bit by bit.

56/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

A word about data files...

An example of questionable choice:

In C, use:

printf(“%.17g\n”, x);

In C++, use:

std::cout <‌< std::setprecision(17) <‌< x <‌< std::endl;

...to preserve information bit by bit.

56/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Accelerator physics codes: storage rings

MAD-X
MAD-X is a CERN code used world-wide, started in the 80’s in the field of high energy beam physics (i.e.
MAD8, MAD9, MADX). All-in-one application with its own scripting language used to design, simulate and
optimise particle accelerators: optics modelling, single particles 6D tracking, machine survey, synchrotron
radiation, aperture margin and emittance equilibrium. [rings, optics, tracking]

MAD-NG
MAD-NG is a recent CERN code aiming to replace MAD-X. Symplectic integration of differential maps,
single-particle tracking, optics calculations. Uses Lua as a scripting language. [rings, optics, tracking]

SixTrack
CERN’s single-particle 6D symplectic tracking code optimised for long term tracking in high energy rings.
Uses its own description language. [rings, tracking]

PyHEADTAIL
Python macro-particle simulation code library developed at CERN for modelling collective effects beam
dynamics in circular accelerators. Interfaced with Python. [rings, tracking, collective effects]

Xsuite
Modern integrated suite of accelerator tools. Runs on GPUs, integrates all of the above [rings, tracking,
collective effects]

57/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Accelerator physics codes: linacs (also recirculating ones)

PLACET / PLACET2
The “Program for Linear Accelerator Correction and Efficiency Tests”, is a code developed at
CERN that simulates the dynamics of a beam in the main accelerating or decelerating part of a
linac (CLIC) in the presence of wakefields. It allows for recirculating layouts. Recently adapted
for muon tracking. It includes the emission of incoherent and coherent synchrotron radiation.
Interfaced with Tcl, Octave, and Python. [linacs, tracking, collective effects, imperfections]

ELEGANT
The “ELEctron Generation ANd Tracking”, it’s a code developed at the Argonne National
Laboratory (ANL, USA) that can generate particle distributions, track them, and perform
optics calculations. Uses its own description language. [linacs & rings, tracking, optics]

58/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Accelerator physics codes: injectors, and more exotic scen-
arios...

ASTRA
“A Space Charge Tracking Algorithm” is a tracking code developed at DESY (Hamburg,
Germany), can simulate injectors and track in field maps. Simulated photocathodes. Uses its
own description language. [injectors, tracking, space charge]

RF-Track
RF-Track was developed at CERN, to simulate beams of particles with arbitrary energy, mass,
and charge, even mixed, in field maps and conventional elements. It can simulate space-charge,
short- and long-range wakefields, electron cooling, inverse Compton scattering, beam loading,
multiple Coulomb scattering. Simulates photocathodes. Interfaced with Python and Octave.
[injectors & linacs, tracking, collective effects, design, imperfections]

And others, but some aren’t maintained or they are not open-source and free...

59/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

High-performance computing

Parallelism

Parallelism can be achieved in different ways, depending on the problem:

1. “Embarrassingly parallel” problems. “Embarrassingly parallel” problems are those where a large number
of tasks need to be performed, with each single task being completely independent of the others.
Examples: imperfections studies; tracking of single-particles.

2. MPI - “massively parallel” problems

MPI, the Message Passing Interface, is just a protocol, to
design codes that run on clusters of computers.

There exist several open-source implementations of MPI,
which fostered the development of a parallel software industry,
and encouraged development of portable and scalable large-
scale parallel applications. Two well-established MPI imple-
mentations are “Open MPI” and “MPICH”.

60/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

High-performance computing

Parallelism

3. OpenMP. Multi-core parallelism. Hacking an existing code to make it parallel.

OpenMP is a programming interface that supports multi-platform shared-memory

multiprocessing programming in C, C++, and Fortran. In simpler words, it makes

programs run in parallel on multi-cores computers, exploiting the multi-threaded ar-

chitecture of modern CPUs.

4. C++ threads

Since version C++11, the C++ language offers a set

of classes to handle parallelism, synchronisation, and

data exchange between threads. These functionalities

are accessible using the class std::thread, defined in

<thread>.

61/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

Scientific computing in C/C++

C scientific library

• The GNU Scientific Library. The GNU Scientific Library (GSL) is an excellent numerical
library written in C. It provides more than 1000 mathematical routines such as random
number generators, special functions, least-squares fitting, etc. Uses BLAS and LAPACK
for linear algebra functionality

C++ template libraries

• Standard template library (STD), provides useful container classes, eg.
std::valarray<T>. Dictionaries and associations are provided using std::set<K>,
std::map<K,T>. Efficient algorithms, like std::qsort, are provided in <algorithm>.

• BOOST, a set of C++ template libraries that provides support for tasks and structures
for numerical calculations and much more. More experimental and less mature than STD

• Armadillo, a high quality linear algebra template library providing a good balance between
speed and ease of use. Syntax and functionality similar to Matlab and Octave

• Eigen, another C++ template library for linear algebra. Includes numerical solvers and
related algorithms

62/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://www.cplusplus.com
https://www.boost.org
http://arma.sourceforge.net
https://eigen.tuxfamily.org

High-performance computing in C/C++

Advanced programming

• Intel Intrinsics. By explicit vectorisation one can access specific instruction sets like
MMX, SSE, SSE2, SSE3, AVX, AVX2. Most compilers will analyse your code and use
these functions wherever possible.

• SWIG, is a software development tool that connects programs in C and C++ with a
variety of high-level programming languages: Python, Octave, Tcl, Lua, ... [Extremely
useful]

GPU Programming

• OpenCL (Open Computing Language) is a framework for writing programs that execute
across heterogeneous platforms consisting of central processing units (CPUs), graphics
processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays
(FPGAs) and other processors or hardware accelerators. OpenCL is an open standard
maintained by the non-profit technology consortium Khronos Group. Conformant
implementations are available from Altera, AMD, Apple, ARM, Creative, IBM,
Imagination, Intel, Nvidia, Qualcomm, Samsung, Vivante, Xilinx, and ZiiLABS.

• CUDA (an acronym for Compute Unified Device Architecture) is a proprietary model
created by Nvidia to program Nvidia GPUs for general purpose processing. The CUDA
platform is a software layer that gives direct access to the GPU’s virtual instruction set
and parallel computational elements, for the execution of compute kernels.63/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://www.swig.org/

The end.

Thank you for your attention!

Any questions?

Acknowledgment: Laurent Deniau (CERN / BE-ABP-LNO) for his suggestions and ideas.

64/64 A. Latina - Introduction to Accelerator Physics - Santa Susanna, Spain

