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1. Introduction 

1.1. Additional Literature 

• S.Y. Lee: Accelerator Physics, 

4th edition, World Scientific, New Yersey 2018, ISBN 978-981-4374-94-1 

• Bryant / Johnson: The Principles of Circular Accelerators and Storage Rings, 

Cambridge University Press, Cambridge 2005, ISBN 978-0-521-61969-1 

• Edwards / Syphers: An Introduction to the Physics of High Energy Accelerators, 

John Wiley & Sons, New York 1992, ISBN 978-0-471-55163-8 

• K. Wille: The physics of particle accelerators, 

Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7 

• H. Wiedemann: Particle Accelerator Physics, 

4th edition, Springer 2015, Berlin, ISBN 978-3-319-18316-9 

• Chao / Tigner: Handbook of Accelerator Physics and Engineering, 

2nd edition, World Scientific, Singapore 2013, ISBN 987-4417-17-4 
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• F. Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik,  

2. Ausgabe, Springer 2008, Berlin, ISBN 978-3-540-75281-3 

• K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 

2. überarb. und erw. Ausgabe, Teubner 1996, Stuttgart, ISBN 978-3-519-13087-1 

• Rossbach / Schmüser: Basic Course on Accelerator Optics, 

CAS 5th general accelerator physics course CERN 94-01 
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1.2. Bending radius and beam rigidity 

Particle guidance and focusing based on beam deflection by Lorentz force 

( )F q E v B= ⋅ + ×
  

  

Ultra-relativistic particles move with speed very close to speed of light! 

Impact of magnetic fields is enhanced by enormous factor: 
81 Tesla 3 10 Vv c B E≈ ⇒ = ↔ = ⋅ /m 

Only magnetic fields are used for beam deflection! 

Bending radius from balance of forces ( )0rm mγ= : 
2

: vB v m q v B p m Bv q
ρ

ρ⊥ = ⋅ ⋅ = =


  

Leads to the definition of the magnetic rigidity Bρ ! 

In circular accelerators, the magnetic rigidity defines the momentum of the beam: 

GeV1Tm 0.3
c

p B p
q

ρ= = =  



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 7 
 

Example LHC: 
• bending radius: ρ = 2.8 km 
• magnetic field:  B = 8.3 Tesla 
 
Magnetic rigidity:  Bρ = 23.2⸱103 Tm 
→ momentum:   p[GeV/c] = 0.3⸱ Bρ 
→ kin. energy:   E ≈ pc = 7 TeV 

Picture taken from CERN Document Server 
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     Magnets 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Beam Guidance 
• Beam Focusing 
• Correction of Chromatic Errors 
• Multipole expansion 

Picture taken from https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.magnetic_dipoles 
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2. Magnets 
2.1. General remarks on the calculation of magnetic fields 

 

Maxwell’s Equations: 

H j∇ × =
 



 (coils) 

0H∇ × =
 

 (gap)   →  H = −∇Φ
 

 !!! 

nc Magnets: 

Φ = const. defines the pole’s contour! 

Magn. Induction from 0 rB Hµ µ=
 

 

 
Taylor expansion of the vertical magnetic field: 

2
2

2(0, ) (0, ) 0, ) ( , )( y y
yy

B B
B y yx yx

x x
B xy = + ⋅ + ⋅ +

∂ ∂
∂ ∂





 

 

        Dipoles        Quadrupoles            Sextupoles 
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2.2. Particle beam guidance 

Deflection of particles  →  homogenous field:  0 ˆ const.yB B e= ⋅ =


 

Corresponding magnetic potential:   0( , )x y B yΦ = − ⋅  

defining the pole’s profile to be flat and parallel:  Dipole Magnets!  

 

 

 
parallel 
poles 

 

0d d dE
gap yoke

n I H s H s H s⋅ = ⋅ = ⋅ + ⋅∫ ∫ ∫
 

  



,  0 0r E EH H H Hµ ⋅ = ⇒   

0 0
n IB

h
µ ⋅

= , Curvature: 0
0

1 q q n IB
p p h

µκ
ρ

⋅
= = = ,   [ ] 1mκ −=  
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Dipole Magnets:   

Iron dominated: 
field determined by 
geometry of poles 
→ 2 flat poles 

Superconducting: 
field determined by 
geometry of coils 
→ j(φ) ~ cosφ  

Picture taken from CERN Document Server Picture taken from G. de Rijk, arXiv:2017.03177 
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2.3. Particle beam focusing 

Restoring force, linearly increasing with increasing distance from the axis: 

, with const.y x
y x

B BB g x B g y g
x y

∂ ∂
= − ⋅ = − ⋅ = − = − =

∂ ∂
 

Corresponding potential:  ( , )x y g x yΦ = ⋅ ⋅ ,      solves    0B∇ ⋅ = − ∆Φ =
 

 

defining the pole’s profile to four hyperbolic poles: Quadrupole Magnets! 

 
2

0( )
2
ay x

g x x
Φ

= ± = ±
⋅

at a distance 02a g= Φ  from the axis. 

 

iron yoke coils 

hyperbolic 
poles 

y 
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The “restoring” force acting on the particles is 

( ) ( )ˆ ˆv v x yF q B q g xe ye= ⋅ × = ⋅ −
 

  

A quadrupole magnet is therefore focusing only in one plane and defocusing in 

the other; depending on the sign of g. 
 
The g-parameter may be related to the current of the coils by evaluating the closed 

loop integral 
1 2 0 1

0 0 0
0 1 2 0

d d d d dEn I H s H s H s H s H s⋅ = ⋅ = ⋅ + ⋅ + ⋅ ≈ ⋅∫ ∫ ∫ ∫ ∫
    

    



, 

 One obtains with 
0

d dgH s r r
µ

⋅ = ⋅


 : 

0
2

2 n Ig
a

µ⋅ ⋅ ⋅
= ,   normalized: 

Quadrupole Strength 

0
2

2q q n Ik g
p p a

µ ⋅
= = ,   [ ] 2mk −=  
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The focal length of a thin quadrupole magnet of length L can be derived from the de-

flection angle α of the particles beam and its relation to the quadrupole strength k, 

 

tan x
f

α =  

tan y
L q qL B g x L xkL
R p p

α = = ⋅ = − = −  

→  Gives a better understanding of the quadrupole strength:  1 1,
x y

k L k L
f f

= − ⋅ = ⋅  

Here we have assumed the length L to be short compared to the focal length f such 

that R does not change significantly within the quadrupole magnetic field. 
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Strong Focusing: 

Light optics: 

 

Magnet optics: 

 

 

Strong focusing 
or 

AG focusing 

Simplest way: 

FODO lattice 

Detailed discussion later! 
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Quadrupole magnets: 

  

Iron dominated: 
field determined by 
geometry of poles 

→ 4 hyperbolic poles 

Superconducting: 
field determined by 
geometry of coils 
→ j(φ) ~ cos2φ  

Picture taken from https://cds.cern.ch/record/1333874/plots Picture taken from https://cds.cern.ch/record/1333874/plots 
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2.4. Correction of chromatic errors 

Quadratic increase of magnetic fields increasing distance from the axis: 

( )
2

2 2
2

1 ´ with ´ const.
2

y
y

B
B g x y g

x
∂

= ⋅ − = =
∂

 

Corresponding potential:    ( )3 21( , ) ´ 3
6

x y g y x yΦ = − ,    solves    0B∇ ⋅ = − ∆Φ =
 

 

 

Sextupole Magnets 

Six poles, profile 
2

02( )
3 ´
yx y

g y
Φ

= ± ±  

or using the aperture 

3
06 ´a g= Φ  

2 3

( )
3 3
y ax y

y
= ± ±  

 

coils 

iron yoke y 
y 
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The g’ parameter may be related to the current of the coils in the well-known manner:  

2

02 3´ 6yB n Ig
x a

µ
∂

= =
∂

 

and we obtain for the transverse magnetic fields: 

( )2 21( , ) ´ and ( , ) ´
2x yB x y g x y B x y g x y

x y
∂Φ ∂Φ

= − = = − = −
∂ ∂

 

We will therefore expect a coupling of particles motion in the horizontal and 

vertical plane due to the y-dependence of the vertical field. 
 
Normalizing g’ to the particles momentum, we obtain the sextupole strength 

0
3

6´q q n Im g
p p a

µ
= = ,   [ ] 3mm −=  

A simple understanding of the action of a sextupole will be given later!  
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2.5. Multipole expansion 

General treatment by multipole expansion, e.g. in polar coordinates: 

( ) ( )( )

( ) ( )( )

1

0
1

1

0
1

( , ) sin cos

( , ) sin cos

n

r n n
n ref

n

n n
n ref

rB r B b n a n
R

rB r B a n b n
Rφ

φ φ φ

φ φ φ

−
∞

=

−
∞

=

 
= ⋅ −  

 

 
= ⋅ +  

 

∑

∑
 

Contribution of multipole n: 
1

2 2 2 2
, , 0

n

r n n n nn
ref

rB B B B a b
Rφ

−
 

= + = +  
 

 

Generally: 2n-pole has 2π/n symmetry, |B|n scales with rn-1. 

n = 1  dipole magnet 

n = 2  quadrupole magnet 

n = 3  sextupole magnet 

n = 4  octupole magnet 

n = 5  decapole magnet 

 

Classification: 

0 :    "upright" magnets
0 :    "skew" magnets, rotated by 2

n

n

b
a nπ

≠

≠
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Normal or upright magnets: 

 
Skew or rotated magnets: 

 
Taken from Zolkin, Timofey, Phys.Rev.Accel.Beams 20 (2017) no.4, 043501 
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2.6. Effective field length 

The assumption of a constant field distribution along the longitudinal axis ( 0)B s∂ ∂ =


 

is not valid in general due to the fringing fields at the end of the magnets. In order to 

simplify the calculation of the optics of particle accelerators, an effective field length 

leff of each magnet is usually defined, calculated from the path-integral 
 

0d effB s B l
∞

−∞

⋅ = ⋅∫
 

  

 
and approximating the real longitudinal field by a rectangular shaped profile. 

Note: leff differs from the length L of the iron poles, in almost all cases leff > L. 

  

rectangular approximation fringe field 
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      Linear Beam Optics 
 
 
 
 
 
 

• Geometric Optics 
• Equation of Motion 
• Matrix Formalism 
• Beams and Trace Space 

© W. Hillert, private archive 
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3. Linear Beam Optics 

3.1. coordinate system following the design orbit 

Reference path = path of a particle moving on the design path (reference orbit): 

 

Use coordinate system fixed to reference orbit (“following the orbit”), changing its 

orientation! Horizontal position and angle of a particle given by displacements x, x´. 
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Coordinate unit vectors: 

  

longitudinal coordinate s is measured along the design orbit 

• ˆs refe v  is tangential to the reference orbit 
• ˆye ⊥  reference orbit is pointing upwards 
• ˆ ˆ ˆx y se e e= ×  ↔  (x, y, s) is right-handed! 
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3.2. A quick and simple first approach using geometric optics 

 

Impact of magnets in a very rough approximation: 

dipole magnet:  drift of length   LD 

quadrupole magnet: thin lens with focal lengths 1 1,x y
Q Q

f f
kL kL

= − =  

Particle positions in horizontal / vertical planes are changed by matrices: 

tan(α) = x´ 

Considering paraxial optics:   x << ρ ,  x´ = tanα ≈ α 
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Plane Position Drift Dipole Quadrupole 

horizontal ( )
´

x
x s

x
 

=  
 

  
1
0 1d

L 
=  

 
M  

1
0 1D

L 
=  

 
M  

1 0
1 1Q f

 
=  ± 

M  
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Plane Position Drift Dipole Quadrupole 

vertical ( )
´

y
y s

y
 

=  
 

  
1
0 1d

L 
=  

 
M  

1
0 1D

L 
=  

 
M  

1 0
1 1Q f

 
=  

 
M



 

 Calculation of single particle trajectories by matrix multiplication, e.g.: 

  
 
 
 
 
 
 
 
 
 
 

 

  

0

= Transfer Matrix 
Qd d d d dDQD dQx x=

M

M M MM M M MM MMM          



 



 

→ Hands-on Lattice Calculation  
recommended E1-E5, optional E6 
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More precise description → matrices have to be derived from equations of motion! 
 

 
 

Derivation of the equations of motion 
 

  

Taken from https:/www.wikipe-
dia.org/wiki/Datei:Lämpel.jpg Free download from https://pixabay.com/de/vec-

tors/tafel-lernen-schule-studieren-152414/ 
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3.3. Equations of motion in a reference system following the design orbit 

Orthogonal, right-handed coordinate system (x, y, s) that follows a reference particle 

traveling along its ideal path (design orbit) and changes its orientation with s: 

positive curvature 1/ρ > 0 negative curvature 1/ρ < 0 

 

We will concentrate on ideal orbits laying within the horizontal plane and on a local 

orbit with positive curvature (ρ > 0), therefore 

( ) ˆ ˆx yR x e y eρ= + ⋅ + ⋅

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and ˆ const.ye =  pointing always upwards! 

The case ρ < 0 can be treated fully analog and is left as an exercise ! 

We use polar coordinates for the horizontal plane: 

cos sin
ˆ ˆ ˆ,

sin cosx se e eϕ

ϕ ϕ
ϕ ϕ

−   
= = − =   

   
 

An increase ds along the reference path will lead to a rotation of ˆxe  and ˆye  by 
1d dsϕ
ρ

= −  

and using  
d d d 1 d
d d d ds s

ϕ
ϕ ρ ϕ

= = −  

we get for the derivative of the unit vectors with respect to s 

d 1 d 1ˆ ˆ ˆ ˆ ˆ ˆ´ , ´
d dx x s s s xe e e e e e

s sρ ρ
≡ = + ≡ = −  

 

Changing 
orientation 

of coordinate 
vectors 

ˆ ˆ( ), ( )x se s e s   
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Now we proceed with several fundamental approximations: 

1) All particles are moving with individual, but constant longitudinal velocities: 

       const. ,s x ys v v v= =
  

2) The curvature of the orbit is varying “slowly”, the derivatives can be neglected:  
         ´ ´́ 0ρ ρ= =   

3) The design orbit is in the (x, s) plane, the vertical coordinate is independent of s: 

      ˆ ´ 0ye =   

4) The transverse displacements are small compared to the bending radius of the or-

bit (paraxial optics): 

        ,x y ρ   

5) There exist no coupling of the transverse to the longitudinal motion. We will ne-

glect all longitudinal components and put 

       ´ ´́ 0s s sR R R= = =   
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For reasons of simplicity, we set ( ) ( )r s x sρ= +  and stop indicating the s depend-
ence, thus getting for R



 and its derivatives 

ˆ ˆx yR r e y e= ⋅ + ⋅


 

ˆ ˆ ˆ´ ´ ´x s y
rR x e e y e
ρ

= ⋅ + + ⋅


 

2 2
´ˆ ˆ ˆ´́ ´́ 2 ´́x s y

r xR x e e y e
ρ ρ

 
= − ⋅ + + ⋅ 

 



 

The change of the transverse position vector is caused by the external Lorentz force 

leading to a momentum change: 

( )
2

0 02
d d
d dr rp p m R m R q v B

t t
γ γ= = = = ×

  

  



  

→  Transformation of derivatives with respect to time d
dt

 (“dot”) to derivatives with 

respect to longitudinal position d
ds

(“prime”) required! 



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 33 

From simple geometric considerations we obtain 

 

d dd d d
d ds s ss v t v t v

x r t r s
ρ ρ ρ

ρ
 

= ⋅ ⋅ = → = + 
 

and therewith get 
2 2

2 ˆ ˆ´́ ´́ ´́s s x y
rR v R v x e y e

r r
ρ ρ

ρ
     = = − ⋅ + ⋅            

 

  

Using the assumption ,s x yv v v  the Lorentz force can be simplified to 

( ) ( )( ) ( )ˆ ˆ ˆ ˆs y x s x y y x x y s y x x yq v B q v B e v B e B v B v qv B e B e× = − + + − ≈ − +


 , 

Particle needs time dt 
to travel a distance on 
displaced orbit which 
corresponds to ds on 

reference orbit 
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Combining all, we obtain the equations of motion (p is the momentum of the particle) 

( )
2

2 ˆ ˆ ˆ ˆ´́ ´́x y y x x y
r q xx e y e B e B e

p
ρ

ρ ρ
   +

− ⋅ + ⋅ = − +   
   

 

We restrict the magnetic field components to the first two normal multipoles 

0 0 1,x y y x
p pB k B k
q q ρ

 
= − = − 

 
 

Important: The multipole strengths have been normalized to the momentum p0 

of the reference particle, the reference momentum! 

Assuming a small momentum deviation 0p p p∆ = −  of the considered non-reference 

particle we approximately can set 

( )
00 0 0

11 1 1 1
p p

p pp
p p p p p

=

 ∂ ∆
≈ + ∆ = − ∂  

 

Inserting this we obtain 
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2

2
0

1 1´́ 1 1x p xx kx
pρ ρ ρ ρ

    ∆
= + − − + −    

    
 

2

0

´́ 1 1p xy ky
p ρ

  ∆
= − − +  

  
 

Neglecting all nonlinear terms in 0, , andx y p p∆ , we again obtain the 

Linear Equations of Motion: 

2
1 1´́ ( ) ( ) ( )
( ) ( )

´́ ( ) ( ) ( ) 0

px s k s x s
s s p

y s k s y s

ρ ρ
  ∆

+ − ⋅ = 
 

+ ⋅ =

 

These are often referred to the Hill’s equation which we will do only in case of perio-

dicity / application to periodic cells or circular accelerators. 

For the following, we will first look at monochromatic beams and set ∆p/p = 0 ! 
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Remember: 

Can be driven resonantly like a child’s swing 

↔ Parametric oscillator 

 

 

 

 

 

 

 

 

 

→ 
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3.4. Matrix formalism 

We will characterize a particles state by a vector built from its relative coordinates: 

vertical displacement
´ verti

horizon

cal angu

tal displacemen

lar displacemen

t
´ horizontal angular displaceme

hor

vert. trace

. trace spa

space

nt
c

t

e

y

x
x
y




   
   
   =
   
   






  

 

and use the matrix formalism to describe particles trajectories: 0X X= ⋅M
 

. In case of 

upright magnets there will be no coupling of the transverse planes and we can gener-

ally write (and treat the 2 trace spaces separately!): 

11 12

21 22

33 34

43 44

0 00 0
0 00 0

0 0 0 0
0 0 0 0 y

x

r r
r r

r r
r r

= =

   
   

   
             

M

M
M  

Next, we have to derive the matrices for drift, dipole and quadrupole magnets. 
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3.4.1. Drift space 

1 ( ) ( ) 0s k sρ = =  gives  0(́ ) ´ const.x s x= = , 0(́ ) ´ const.y s y= =  

Thus we get: 

0 0
0 0

0 0
0 0

1
0 1

1
0 1

drift

L

L

 
 
 

=  
 
 
 

M  

3.4.2. Dipole magnets 

Constant bending radius: 0k = . Homogeneous solution (case 0p p∆ = ): 

( ) cos sinh
s sx s a b
ρ ρ

= ⋅ + ⋅  

The integration constants a, b are derived from the boundary conditions at 0s =  

0 0( 0) , (́ 0) ´bx s a x x s x
ρ

= = = = = = , 
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and by defining the bending angle Lϕ ρ=  of the dipole magnet, we obtain : 

0 0

0 0

cos ´ s( )
( )

in
´

x L
y

x x
yL y

ϕ ρ ϕ
ρ ϕ

⋅ + ⋅ ⋅

+ ⋅ ⋅

=

=
 

  
1
0

cos sin
1 sin c

0 0
0

0 0
0 0

os

1

0
dipole

ϕ ρ ϕ
ρ ϕ ϕ

ρϕ

 
 
 

= 
−


 
 

⋅



M  

A sector magnet is therefore focusing in the horizontal plane. 

Sector / rectangular dipole magnets and edge focusing: 

 
 

Sector Magnet 

Rectangular Magnet 

→ Hands-on Lattice Calculation  
recommended E31-E32 
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The focusing / defocusing effect of the fringe fields (edge focusing) depends on the 

entrance (exit) angle ψ  and may again be described by a linear transformation matrix 

0 0
0 0

1

0

0
t

0
0

a

1 0
t

n

an

1

0 1

ψ

ψ ρ

ψ ρ−

 
 
 

=  
 
 
 

M  

We finally obtain with 2ψ ϕ=  and rect dipoleψ ψ= ⋅ ⋅M M M M  

2

0 0

1

0 0

0 0

1 sin
0 1

0 0 2 1

rect

f
f f f
ρϕ ρϕ

ρϕ ρϕ

ρ ϕ

=

 
 
 
 
 
 
 

−
− −

M  

where we have defined the focal length tanf ρ ψ≈  caused by edge (de)focusing. 

A rectangular dipole magnet is therefore focusing in the vertical plane. 
It acts like a drift space in the horizontal plane! 
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3.4.3. Quadrupole magnets 

Assuming a pure quadrupole magnet we set the bending term 1 0ρ = . The solution 

of the equation of motion depends on the sign of the quadrupole strength k. For 0k <  

we get the solution of a quadrupole magnet, which is horizontal focusing and vertical 

defocusing (the case 0k >  can be treated completely analog): 

( ) ( )
( ) ( )

( ) cos sin

( ) cosh sinh

= ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

x s a k s b k s

y s c k s d k s
 

The integration constants a, b, c, d are derived from the boundary conditions at s = 0: 

0 0

0 0

( 0) , (́ 0) ´
( 0) , (́ 0) ´

x s a x x s b x
y s c y y s d y

= = = = = =

= = = = = =
 

Substituting and building the first derivative, we obtain the transformation matrices 

for a horizontal focusing (FQ) and a horizontal defocusing (DQ) quadrupole, 

where we put k LΩ = ⋅  with the quadrupole length L and focal length 1 f kL= . 
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QF (k < 0):  

0

1 1 0cosh sinh
1 1

sinh

0 0 0 0
1cos sin 1 0

1 1sin cos
0 0 0 0

0 0

cos

0 0
00 0

h
0

QF

L

k

k

k
fk

f→
=

 
  
  
  
  
 

Ω Ω

Ω Ω

 →
  
  
  
     

Ω Ω

−− Ω Ω

 

M
 

QD (k > 0): 

0

1 1 0cos sin
1 1

si

1cos 0 0 0 0
0 0 0 0

0

h sinh 1 0
1

00 0
0 00

1sinh cos

n

h

cos
0

QD

L

k

k

k

f

k
f

→
=

 
  
  
  
  
 

Ω Ω
−

− Ω Ω

 →
  
  
  
  

Ω Ω

  

Ω

 

Ω
M

 

→ Hands-on Lattice Calculation  
recommended E30 
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3.4.4. General properties of the transfer matrices 

Each 4x4 transfer matrix consists of two 2x2 matrices  

4 4

0 0
0 0

0 0
0 0

x

y

x =

  
  

  
       

M

M
M  

The elements of the 2x2 matrices can be expresses by the fundamental solutions C(s), 
S(s), which from 0 0( ) ( ) ´ ( )x s x C s x S s= ⋅ + ⋅  satisfy (0) (́0) 1, (́0) (0) 0C S C S= = = = : 

0 0
0 0 0

0 0

( ) ( ) 1 0
( , ) ( , )

(́ ) (́ ) 0 1
C s s S s s

s s s s
C s s S s s

− −   
= → = =   − −   

M M I  

The determinant for 0s s=  is =1 and in general represented by the Wronskian 

( )det ´ ´CS SC= −M  

Since C and S are solutions of the equation of motion, the derivative vanishes and 

( ) ( )d det ´́ ´́ 0 det 1
d

CS SC
s

= − = → =M M    
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3.4.5. Particle orbits in a system of magnets 

With the derived matrixes  particle trajectories may be calculated for any given arbi-

trary beam transport line by cutting this beam line into smaller uniform pieces so that 

k = const. and ρ = const. in each of these pieces: 

 

5 4 4 3 3 2 2 1 1 0E D Q D Q D Q D Q DX X= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅M M M M M M M M M
 

 

Particle Orbit 

Quadrupole 

→ Hands-on Lattice Calculation  
recommended E7-E11 

EX


 0X

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but:
 
 

 

Particle Orbit 
Envelope 

σ (s) = ??? 
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3.5. Particle beams and trace space 

Configuration space ↔ trace space ↔ phase space 

 
Famous theorem of Liouville: 

The phase space distribution function describing the density of possible states around a 
phase space point is invariant under conservative forces”! 

→ The phase space area covered by the beam remains constant! 
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3.5.1. Beam emittance 

Beam = statistical set of points in trace space! 

Consider e.g. horizontal trace space, intensity distribution in x, x´. 

Choose origin of the coordinate axes ˆxe  and ´ˆxe  at the barycentre of the points: 

1 1

1 0´0, ´1N

i i
i i

N

x x x
N

x
N = =

= = = =∑ ∑  

for a centered beam (will be assumed)! 

Interested in variances (rms spread): 

2 2 2 2

1 1
´

1 1, ´
N N

i
x i x i

iN
x

N
xσ σ

= =

= =∑ ∑  

System ( , )́X X  which is rotated by θ : 
2 2

´ 0X Xσ σ
θ θ

∂ ∂
= =

∂ ∂
 

 

 

→ Hands-on Lattice Calculation  
recommended E12 - E15 
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We will define the spread of the distribution, which is called the emittance εx, by 

22 2´´ ´X Xx x x x xσ σε ⋅= = ⋅ −  

It is important to note that this is a statistical definition of ε ! 
More general, ε  will be defined over the area d d ´x xπε = ⋅∫  ! 

 
The emittance can be considered as a statistical mean area: 

( )
1 1

22

1 1

1 1 1 2´ ´
2

N N

i j j i ij

N N

x
i j i j

x x x
N N

x Aε
= = = =

= − =∑∑ ∑∑  

(remember: 
3 3 0

1 2 2 12
a b

A a b a b a b
= =

∆ = × = −


 ) 

where Aij is the area of the triangle 0PiPj 

and ε is a measure of the spread of the points 

around their barycentre. 
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The area of the “rms”-envelope-ellipse is just π times the emittance ε 

´X X xA ab σ σπ π π ε= = =  

and its equation with respect to the axes X and X´ is 

2 2
2 2 2 2

´2 2
´

21´ ´X X x
X X

X X X Xσ σ
σ σ

ε+ = ⇔ ⋅ + ⋅ =  

 

3.5.2. Twiss parameters 

By an inverse rotation of angle θ−  in trace space we obtain 

2 2 2 2 2 2 22 2
´ ´ ´´ ´ ´ 2 ´2 ´x x x xx x xx x x x x x x x x r xσ σ σ σ σε σ= ⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅  

where we have defined the correlation coefficient 

2 2

´

´

x xr
x x

=
⋅

 

It is more or less obvious, that such a correlation term must exist in general. 
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We may define the so-called Twiss-parameters αx, βx, and γx  such that 

2

2
´

´

´

´

x x x

x x x

x x x x

x

x

r x x

σ β ε

σ γ ε

σ σ α ε

= =

= =

= = −

 

and the equation of the envelope-ellipse reads in the “conventional” form: 

2 22 ´ ´x x x xx x x xγ α β ε+ + =  

 
All the above derived equations appear in identical form for the vertical plane, x 

has only to be replaced by y. In the following, we will skip the index x for reason of 

simplicity. Please note, that this doesn’t imply that emittances and corresponding 

Twiss parameters are equal in both planes – they are not! 

The meaning of the Twiss-parameters can be read off from the graphical representa-

tion of the envelope-ellipse: 
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• β  represents the r.m.s. beam-envelope per unit emittance, 

• γ  represents the r.m.s. beam divergence per unit emittance, 

• α  is proportional to the correlation between x and x´. 

x 

x´ 
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3.5.3. Beta functions  

In the following, we will continue to concentrate on the situation where 0p p∆ = . 

With 2( ) 1 ( ) ( )xK s s k sρ= −  and ( ) ( )yK s k s=  the equations of motion read 

´́ ( ) ( ) ( ) 0, ´́ ( ) ( ) ( ) 0x yx s K s x s y s K s y s+ ⋅ = + ⋅ =  

They describe a transverse oscillation with position dependent amplitude and phase, 

which is called betatron oscillation. Both transverse planes can be treated similar! 

We will therefore concentrate on x and try to solve this equation, making the Ansatz 

( )0( ) ( ) cos ( )x xx s A w s sµ ϕ= ⋅ ⋅ +  

(A and 0ϕ are integration constants, we will skip the index x from now on) and obtain: 

( ) [ ] ( )2
0 0´́ ´ cos 2 ´ ´ ´́ sin 0w w K u w wµ µ ϕ µ µ µ ϕ − ⋅ + ⋅ ⋅ + − ⋅ ⋅ + ⋅ + =   

This relation is valid for any given phase ( )sµ  at any given position s, therefore 
2´́ ´ 0

2 ´ ´ ´́ 0
w w K w

w w
µ
µ µ

− ⋅ + ⋅ =
⋅ ⋅ + ⋅ =
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By integration of the second equation we obtain 

2
0

d( )
( )

s ss
w s

µ = ∫




 

and by using this relation  3
1´́ 0w K w
w

− + ⋅ = . 

With the definition of the beta function 2( ) : ( )s w sβ =  we derive for the amplitude and 

phase of the oscillation: 

( )0

0

( ) ( ) cos ( )

d( )
( )

s

x s A s s

ss
s

β µ ϕ

µ
β

= ⋅ ⋅ +

= ∫




 

Building the first derivative and defining (́ )( ) :
2

ss βα = − , we obtain 

( ) ( ){ }0 0(́ ) ( ) cos ( ) sin ( )
( )

Ax s s s s
s

α µ ϕ µ ϕ
β

= − ⋅ + + +  
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The equation for x can be transformed to  

( )
2

2
0 2cos x

A
µ ϕ

β
+ =

⋅
, 

which can be used in combination with the equation for x´ to obtain 

( )
2

2
0sin ´x x

A A
β αµ ϕ

β

 
+ = ⋅ + ⋅  

 
 

Using 2 2cos sin 1+ =  we derive 
2

2
2( ) ( ) ´

( ) ( )
x s x s x A

s s
α β

β β

 
+ ⋅ + ⋅ =  

 
 

which can be transformed by defining 
21 ( )( ) :

( )
ss

s
αγ

β
+

=  to: 

2
2 2 2 1 ´ 12 ´ ´ , where (́ ), ,

( ) 2
x x x x A s

s
β αγ α β µ α γ

β β
+

+ + = = = − =  
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Are the newly defined functions α, β, γ  identical with the Twiss Parameters? 

Each particle is represented by its individual Ai and ϕi. 

But all particles are described by the same optical functions α, β, γ, µ ! 

Let’s check and calculate the second statistical moments: 

( )2 2 2 2 2 2
0,

1cos
2x i i i xx A Aσ β µ ϕ β σ εβ= = + = → =   

( ) ( ) ( ) ( ){ }
2

2 2 2 2 2 2 2
´ ´

1´ cos ... sin ... 2 cos ... sin ...
2

i
x i x

Ax Aσ α α γ σ εγ
β

= = + + = → =   

( ) ( ) ( ){ }2 2 2
0, 0, 0,

1´ cos cos sin ´
2i i i i ixx A A xxα µ ϕ µ ϕ µ ϕ α εα= − + + + + = − → = −   

( )22 2 2 2 2 21 1´ ´
2 2i ix x xx A Aε βγ α= − = − =   

→ Indeed – they are!!!  
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Note: 

Each particle will stay on its own ellipse, which will enclose a constant area in phase 

space A. The amplitude factor A represents the Courant Snyder invariant! The 

shape of the ellipse is determined by the Twiss parameters α, β, γ  and will change 

along the magneto-optics system, its area will stay always constant (Rem.: in case of 

conservative forces and no acceleration). The shape (not the size) of all single particle 

ellipses are determined by the same Twiss parameters!  

 

 

→ Hands-on Lattice Calculation  
recommended E18-E21 



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 57 

3.5.4. Transformation in trace space 

According to Liouville’s theorem, all particles enclosed by an envelope ellipse will 

stay within that ellipse. The transformation of the horizontal and vertical ellipse pa-

rameters along the beam line may be derived from the transport matrixes in the hori-

zontal and vertical plane. Starting at s=0, we have for a particle on this ellipse 
2 2 2 2 2

0 0 0 0 0 0 02 ´ ´ 2 ´ ´x x x x A x x x xγ α β γ α β+ + = = + +  

Any particle trajectory starting at s=0 transforms to s≠0 by 

0 011 12

0 021 22

( ) ( )
´ ´´ (́ ) (́ )

x xr rx C s S s
x xr rx C s S s

       
= ⋅ = ⋅       

        
 

which gives for the transformed ellipse equation via 

1

0

0

1(́
´ ´

) ( ) ´ ´1
´ (́ ) ( ) ´ ´ ´

x S s S s x S x S x
x C s C s x CCS C x CxS

−

=

=

− −       
= ⋅ ⋅ =       − − +       −

M

M


 

and   2 2 2 2 2 2 2 2 2 2
0 0 0 0´ 2 ´ ´ ´ , ´ ´ 2 ´ ´ ´ , ´ ...x S x SS xx S x x C x CC xx C x x x= − + = − + =  
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( ) ( )( )

( )

2 2 2
0 0 0 0 0 0

2 2 2
0 0 0

´ 2 ´ ´ ´ 2 ´ ´ ´ ´ ´

2 ´

S S C C x S S S C S C C C x x

S S C C x

αγ

β

γ α β γ α β

γ α β ε

==

=

⋅ − ⋅ + ⋅ ⋅ + − ⋅ + + ⋅ − ⋅ ⋅

+ ⋅ − ⋅ + ⋅ ⋅ =






 

This gives the transformation of the beam parameters in matrix formulation 

2 2
0

0
2 2

0

2
´ ´ ´ ´

´ 2 ´ ´ ´

C S C S
C C S C S C S S
C S C S

β β
α α
γ γ

 −   
     = − + − ⋅    

    −    

 

Another useful relation may be obtained by defining the Beta matrix B 

( )
2

2
2
´

´
, det 1,

´
x

x

xx

xx

σβ α
β γ α ε

α γ σ

 − 
≡ = − = ⋅ = ≡    −   

B B B Σ  

 

The equation of the envelope-ellipse can be transformed to: 
1 1

0 0 0 1 1 1
T Tx x x xε − −= ⋅ ⋅ = ⋅ ⋅B B     

where the inverse of the Beta matrix is 



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 59 

1 γ α
α β

−  
=  

 
B  

and displacement-vector X


 transforms according to 

( )1 0 1 0 0, T T T Tx x x x x= ⋅ = ⋅ = ⋅M M M      

By inserting 1−= ⋅1 M M , we obtain: 

( ) ( ) ( )

( )

1 1 1
0 0 0

1 1 1
0 0 0

1

1 0 1

T T T

T T

T T

x x

x x

x x

ε − − −

− − −

−

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

M M B M M

M M B M M

M B M

 

 

 

 

and we can read off the transformation of the Beta matrix: 

1 0
T= ⋅ ⋅B M B M  

 
This can e.g. be used to derive the beta-function around a symmetry-point of a trans-

fer-line where 0α =  in a simple way: 
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2

1

01 1 0
( )

0 10 1 1 1

sym
sym symsym

sym

sym sym

s s
s

s
s s

β
β ββ

β
β β

 
+       = ⋅ ⋅ =             

 

B  

This gives the relations for the beam parameters around a symmetry-point: 
2

( )

( )

1( )

sym
sym

sym

sym

ss

ss

s

β β
β

α
β

γ
β

= +

= −

=

 

The corresponding beam size scales with 

( )x sσ ε β= ⋅  ! 
 

 

Remember:   ( )x sσ ε β= ⋅ , ´ ( )x sσ ε γ= ⋅ ,   and therewith: 
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2

0
0 0

( ) 1 , (́ ) const.ss s εσ σ σ
β σ

 
= ⋅ + = = 

 
 

 
To obtain further insights, we will compare the particle’s beam with a Gaussian light 

beam (TEM00), characterized by its waste radius w(s) and Rayleigh length zR, in 

which w is doubled. From diffraction theory, we know (from diffraction integrals): 
2 2

0
0 max

0

( ) 1 , ,R
R

s ww s w z
z w

π λθ
λ π

 
= ⋅ + = = 

 
,    

( )2 2

2

22
0

max( , )
x y

wwI x y I e
w

− +
 = ⋅ ⋅ 
 

 

This indicates: 
2
0

0 R
wz πβ
λ

= = ,     and from    
2 2

2
( , ) d d

4( , ) d dx

x I x y x y w
I x y x y

σ
⋅

= =
⋅

∫∫
∫∫

 

and replacing 2 2w σ εβ= =  we obtain the important relation: 

4π ε λ⇒ ⋅ =  
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The transformation matrix M can be derived also from the Twiss parameters. With 

( ) { }

[ ]{ }
0 0 0

0 0 0 0

( ) cos cos cos sin sin

(́ ) cos cos sin sin sin cos cos sin

x s

x s

εβ µ ϕ ε β µ ϕ µ ϕ

ε α µ ϕ µ ϕ µ ϕ µ ϕ
β

= + = ⋅ ⋅ ⋅ − ⋅

= − ⋅ ⋅ ⋅ − ⋅ − ⋅ + ⋅
 

and the starting conditions 0 0(0) , (́0) ,́ (0) 0x x x x µ= = = , which transform to 

0
0

0

0 0
0 0 0

0

cos

1sin ´

x

xx

ϕ
ε β

αϕ β
ε β

=

 
= − + 

 

 

we obtain:  

( )

( )

0 0
0

0
00 0

0 0

cos sin sin

( , )
1cos sin cos sin

s s

β µ α µ β β µ
β

βα α α αµ µ µ α µ
β β β β β

 
+ 

 =  
− + − − 

 

M  
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Circular 
Accelerators 

Picture taken from https://commons.wikimedia.org/wiki/File:Swiss_Light_Source,_PSI_-_panoramio.jpg 
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4. Circular Accelerators 

4.1. Weak focusing 

Beam stability: transverse focusing in both planes! 

Equation of motion: 



2

0

´́ ( ) ( ) 0

´́ ( ) (

1 ( )
( )

( 0) )

x s x s

y s y s

k s
s

k s

ρ
>

 
−+ ⋅ =

+ ⋅ =


 
  

Idea: horizontally defocusing k is overcompensated by geometrical focusing! 

2
10 yBqk

p x ρ
∂

= −
∂

< <  

 With 0p q Bρ= , where B0 defines the bending field at the design orbit, one obtains 

0

0 1yB
n

B x
ρ ∂

< −
∂

<=        (Steenbeck 1924) 
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where we have defined the field index n to  

2
0

0

( )
n

y
y

B xn k B x B
B
ρ ρρ

ρ ρ

−∂  +
= = − → = ⋅ ∂  

 

Thus, a circular accelerator like a synchrotron has to be made of dipole magnets with 

radially decreasing bending field strength fulling the above derived weak focusing 

condition.  

Particles will oscillate around the reference trajectory with the spatial frequency 

2
1 1 ,x y

n nk kω ω
ρ ρ ρ

−
= − = = =  

The number Q of oscillations per turn of length L = 2πρ will then be 

1 d 1 d1 1, 1
2 2x y

x y

s sQ n Q n
π β π β

= = − < = = <∫ ∫ 

 

Problem: 

We derive for the constant beta functions ,x yβ ρ>  

→ beam size σ εβ=  will increase remarkably with increasing radius! 
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Synchrophasotron in Dubna 
• E = 10 GeV 
• ρ = 30.5 m 
• B = 1.3 Tesla 
• A = 150x40 cm2 
• Magnets 36,000 tons 

Picture taken from https://www.interactions.org/institution/joint-institute-nuclear-research-dubna 
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4.2. Strong focusing 

Focusing in both planes possible in case of alternating gradient – well know from 

light optics: 

 

Magnet optics: 

Simplest configuration: FODO lattice, periodic arrangement of identical structures 
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FODO 

DESY II → 
←  DESY I 

Picture taken from https://desy2.desy.de/ 
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4.2.1. Stability criterion 

If ( )LM  is the transformation matrix for one periodic cell we will have for N cells:

    ( )( )
N

N L L⋅ =   M M  

For a full lattice period, we take use of Floquet’s theorem. Recalling the equations 

of motions 
2( ) ( ) 1

( ) ( ) ( )        
( ) (´́ ( ) ( ) 0          with    

´    (́ ) ( ) 0         with        
)

 y y

x xx s x s
y s

K s K s s k s
K s s ks Ky s

ρ+ ⋅ =
+

−
=⋅ =
=

 

it states (Gaston Floquet, 1847 – 1920) for e.g. ( )0( ) cos )( ) (x xx s A ss µβ ϕ= +  

If K(s) is periodic, the amplitude function (and therefore β(s)) is periodic as well. 

In this case we call the DGL Hill’s equation (George William Hill 1838 – 1914). 

Please note and take care: 

Floquet’s theorem doesn’t state that µ(s) and therewith x(s), y(s) are periodic as well! 

This would be an exception! (catastrophic, as we will see later) 
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Thus we recommend periodic boundary conditions 0β β= , 0α α=  and obtain, us-

ing the Twiss parameter representation of the transfer matrix: 

0 0

0 0

cos sin sin
sin cos sin

µ α µ β µ
γ µ µ α µ
+ 

=  − − 
M  

This matrix was first derived by Twiss from general mathematics principles and is 

called the Twiss matrix (Richard Q. Twiss, 1920 – 2005). 

We calculate its eigenvalues from 

( ) { } ( )2det Tr det 0λ λ λ− ⋅ = − ⋅ + =M I M M  

With { }Tr 2 cos µ= ⋅M  and ( )det 1=M  we obtain 

1,2 cos sin ii e µλ µ µ ±= ± =  

We require that the eigenvalues remain finite thus requiring a real betatron phase µ . 

This is guaranteed when cos 1µ ≤  and leads to the general stability condition:  

{ } 11 22Tr 2r r= + ≤M  
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And now comes the “clou”: Rewriting the Twiss matrix using 

2 1 0
,

0 1
α β
γ α

−   
= = = −   − − −   

J J I  

it can be expressed by 
cos sinµ µ= ⋅ + ⋅M I J  

Similar to Moivre’s formula we get for N equal periods 

( ) ( ) ( )cos sin cos sinNN N Nµ µ µ µ= ⋅ + ⋅ = ⋅ + ⋅M I J I J  

and    { } ( )Tr 2 cos 2N Nµ= ⋅ ≤M  

Conclusion: 

In case of a real betatron phase advance µ, the beam size in a circular accelerator will 

remain finite (the 100 Mio $ question in the 50’s!). This can easily be proofed by 

calculating the trace of the one turn matrix:  { }Tr 2≤M  
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4.3. Periodic focusing systems 

4.3.1. General FODO lattice 
 

 
 

The FODO geometry can be expressed symbolically by the sequence 

1 2 1 2

1 1 1 1QF, D, QD, QD, D, QF2 2 2 2
−= =M M

 

 

It is sufficient to use the thin lens approximation ( Ql f ). We will set the focal 
lengths to 2 2 Df f= , 1 2 Ff f= , the drift length to L. Defining  

*
1 2 1 2

1 1 1 L
f f f f f

= + −
⋅
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the transformation matrix of half a FODO cell is 

1
1 2 *

2 1 2

1 0 1 0 11
1 1 1 1 1 10 1

L f LL
f f f L f

−      
= ⋅ ⋅ =      − − − −      

M  

Multiplication with 1 2−M  (for which f1 has to be replaced by f2 and v.v.) gives 

( )
( ) { }

*
2

FODO * * *
1

1 2 2 1 4and Tr 2 2
2 1 1 2

L f L L f L
f L f L f f

 − ⋅ −
= = − ≤ 

− ⋅ − − 
M M  

This is equivalent to *0 1L
f

≤ ≤ , and defining 
1

Lu
f

= , 
2

Lv
f

=  we get 

0 1u v u v≤ + − ⋅ ≤  

from which we derive the boundaries of the stability region 

1, (1)
1

1, (2)
1

u
u v

u

u
v v

u

≤ ≥
+

≤ ≤
−
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which gives the famous necktie diagram for thin lens approximation:  

      
In the simple case of equal focusing strengths, we arrive at 

2

1 2 *
FODO 1

2 4
2 ,

2
L Lf f f
f f

L L
f f

 
= = = → =


≤


 

→ Hands-on Lattice Calculation  
recommended E22 

(1) 

(2) 

Remark: 

The average beta function is 

2
sin

Lβ
µ

=  

and minimized for 

90
2
πµ = = °  



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 76 
  Courtesy of Bernhard Holzer, CAS lectures 
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4.3.2. Periodic beta functions 

Periodic solutions of a periodic lattice of period-length L will be 

0 0 0

0 0 0

( ) ( )
( ) ( )
s L s
s L s

β β β
α α α

+ = =
+ = =

 

Comparing the transfer matrix for one period with its Twiss parameter representation 

0 011 12

0 021 22

cos sin sin
sin cos sin

r r
r r

µ α µ β µ
γ µ µ α µ
+  

= =    − −   
M  

we can determine the Twiss parameters at the symmetry points (where α = 0!) 

12 21
0 0 0 112 2

011 11

10, , , cos
1 1
r r r

r r
α β γ µ

β
−

= = = = =
− −

 

and transform them to any position s using e.g. the beta matrix formalism 

  0
0 0

0

0
( , ) ( , )

0
Ts s s s

ββ α
γα γ

−   
= ⋅ ⋅  −   

M M  

thus revealing the development of β(s), α(s), γ(s). 

→ Hands-on Lattice Calculation  
recommended E23-E26 
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Example: simple model toy ring (taken from Wille): 

 

ring with 8 identical 
FODO cells: 

(Focusing – Drift (=O) – 
Defocusing – Drift (=O) 
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Choosing 1.20mQF QDk k= = , we can calculate the transfer matrix M and extract the 

Twiss parameters, obtaining:  

  
→ Hands-on Lattice Calculation  

recommended E32, E34, E39-40 
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4.4. Transverse beam dynamics 

4.4.1. Closed orbit 

Remember: In circular accelerators the amplitude function is periodic according to 

Floquet’s theorem and reproduces itself after one turn. 

This implies, that the charge center 

of the beam also moves on a closed  

trajectory, which is called the closed orbit! 

The shape of the closed orbit is determined 

by the magnets and can – due to errors and 

misalignments – significantly deviate from 

the design orbit! 

Dedicated steerer magnets (small dipoles), 

which have to be installed around the ring, 

are used to correct closed orbit deviations. 
Picture taken from https://www.viator.com/de-CH/tours/Lon-

don/The-Slide-at-the-ArcelorMittal-Orbit/d737-9883P4 
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4.4.2. Betatron tune 

The betatron tune Q is defined as the number of oscillations per revolution: 

,
,

( ) 1 d
2 2 ( )x y

x y

L sQ
s

µ
π π β

= = ⋅ ∫  

 

If one regards the phase space at an ar-

bitrarily chosen point, a single particle 

moves on its phase space ellipse. 

The points represents the parameters af-

ter 1,2, … 5 revolutions. 

 

The betatron tune is one of the most important parameter in circular accelerators! 

→ Hands-on Lattice Calculation  
recommended E27 
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4.4.2. Filamentation 

If the envelope ellipse bσ  of the beam is not matched to the ellipse mσ  of the periodic 

lattice, it will start to rotate with a phase advance per revolution of 2π Q  

 
Due to effects of higher order the quadrupole strengths and therefore the phase ad-

vance depends on the amplitude (horizontal and vertical displacements). In case of 

mismatch, the beam phase space distribution starts to filament. After a large number 

of revolutions, the distribution may be surrounded by a large ellipse of the form of 

the lattice ellipse. 

→ Hands-on Lattice Calculation  
recommended E28 

Beam matrix: 
2

beam 2
´

´

´
x

x

xx

xx

σ

σ

 
=   

 
Σ  

beam beam

b b
beam

b b

ε
β α
α γ

= ⋅

− 
=  − 

Σ B

B
  

Matching: 
b m

b m

b m

β β
α α
γ γ

=

=

=
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Example for an unmatched and matched beam (courtesy of B. Schmidt): 
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4.4.3. Normalized phase space and normal forms 

It is useful to transform the oscillatory solution with varying amplitude and frequency 

to a solution which looks exactly like that of a harmonic oscillator. So far, we had: 

( )0( ) ( ) cos ( )x xx s A s sβ µ ϕ= ⋅ +  

( ) ( )0 0
( )(́ ) cos ( ) sin ( )
( ) ( )x x

x x

s Ax s A s s
s s

α µ ϕ µ ϕ
β β

= − + − +  

We now introduce new coordinates ( )nx µ  or ( )nx ψ defined by: 

( ) ( ),
( )n

x

x s sx
Qs

µψ
β

= =  

The angle ψ  advances by 2π  every revolution. It coincides with θ  at each maxβ  and 
minβ  location and does not depart very much from θ  in between. We can as well use 

the set ( )nx µ  which only differs by the different phase advance 2 Qπ  per revolution. 

Here, we will continue to use the phase advance µ as argument. 
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In case of ( )nx µ  we get the required transformation using ´ 1µ β=  and ´ 2β α= −   






1 1( ) ( ) 0
d d d ´( ) (́ ) ( )

d d d

n

n
n

nn n

n xx

x x s
x x

x s x xx x x s x s
s

β

µ
β β

α αµ β βµ µ β β ==
=

=

 =
     → = ⋅  = = = ⋅ + ⋅     
 
 

T










 

or in short from: 
1,n nx x x x−= ⋅ = ⋅T T     

with 

1

1 0 0
1,

ββ αα β β ββ

−

 
  
  = =  −   

   
 

T T  

Please note that the transformation matrix T is explicitly depending on the longitudi-

nal position s, since the optical functions are explicitly dependent on s as well! 

Using these normalized coordinates, the equation of motion is simplified to 
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2 2
2

2 2
d d0, 0
d d

n n
n n

x xx Q x
µ ψ

+ = + =
 

The ellipse equation transforms to 

2 2 2 22 ´ ´ n nA x xx x x xγ α β= + + = + 
 

and thus the ellipse transforms to a circle (→ normalized phase space) 

We have vanishing correlation and get for the variances 
2 2 , 0n n n nx x x xε= = ⋅ =   
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Looking at one turn in a circular accelerator, the one-turn matrix M is simplified to a 

simple rotation matrix. Using ( ), ´x x , we obtained 

0 0

0 0

cos sin sin
sin cos sin

µ α µ β µ
γ µ µ α µ
+ 

=  − − 
M  

Using ( ), ´n nx x , the one-turn matrix transforms to R 

( )1 1 1
0 ,0 ,0n n n nx x x x x x− − −

=
= ⋅ = ⋅ = ⋅ ⋅ → = ⋅

R
T M M T T M T     

 



 

and simplifies to a pure rotation matrix: 

( ) ( )
( ) ( )

1 cos 2 sin 2
sin 2 cos 2

Q Q
Q Q

π π
π π

−  
= =  − 

R T M T   

In general, we can transform any quadratic (n x n) matrix M to its Jordan normal 

form R. From the transformation, we get a bunch of useful information (here α, β, γ, 

and the tune Q). 
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4.4.4. Closed orbit distortions 

Let us assume a dipole field error produced by a short dipole which makes a constant 

angular kick in divergence (from 
( )

´ ´pr
q B

x B x
B

l ϕ δ ρ δ
δδ

= ⋅ ≈ ⋅ = ⋅ ) 

( )´
Bl

x
B

δ
δ

ρ
=  

This perturbs the orbit trajectory which elsewhere obeys the 

unperturbed Hills differential equations 

2
1´́ ( ) ( ) ( ) 0, ´́ ( ) ( ) ( ) 0
( )

x s k s x s y s k s y s
sρ

 
+ − ⋅ = + ⋅ = 

 
 

Using matrix algebra, the displacement of the closed orbit at the position of the field 

error can be calculated from the displacement just before and after the kick element: 

,0 ,0 ,00 0

,0 ,0 ,00 0

cos sin sin
´ sin cos sin

c c c

c c c

x x x
x x x x

µ α µ β µ
δ γ µ µ α µ

+      
= ⋅ = ⋅      ′ ′ ′− − −      

M  
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which yields with 2 Qµ π=  

( ) ( )

( ) ( ) ( )

0
,0

,0 0

´ cos
2sin

´ sin cos
2sin

c

c

xx Q
Q

xx Q Q
Q

β δ π
π

δ π α π
π

=

′ = −  

 

The closed orbit displacement ( )cx s  is calculated from ( )0 ,0( ) ,c cx s s s x= ⋅M  : 

( )

( )

0 0
0 ,0

,00 0
0

0 0

0

( )
cos sin ( ) sin

( )
( ) 1 ( ) 1 ( )

sin cos cos sin
( )( ) ( )

cc

cc

s
s

xx s
xx s s s

ss s

β
µ α µ β β µ

β

βα α α α
µ µ µ α µ

ββ β β β

+

= ⋅
′′ + −

− + −

 
 

    
        

 
 

 

( ) ( )
( ) ( )0 0

0( ) ( )
2s

( ) cos cos ( )
in

( )cx s
s s Bl

Q
Q s s

B
Q

β β δ
β µ

ρ
η

π
ψ µ π→ = = ⋅ − +  

In case of a random distribution we have to integrate over the kick density d ( )
d

Bl
s

δ   

( )
( ) ( )0 0 0 0

d( ) 1( ) ( ) ( ) cos ( ) ( ) d
2sin dc

Bls
x s s s s s Q s

Q B s
δβ

β µ µ π
π ρ

= ⋅ − + ⋅∫  
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Closed orbit distortions: uncorrected and corrected 
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Courtesy of Bernhard Holzer, CAS lectures 
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Dipole error and integer tune: 
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Quadrupole error and half integer tune: 
  

Picture taken from https://wiki-sir-
ius.lnls.br/mediawiki/index.php/Ma-

chine:Magnets 
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4.4.5. Gradient errors 

Consider a small gradient error which affects a quadrupole at position s in the lattice 
of a circular accelerator. Translated to matrix algebra, we have to multiply a perturba-
tion matrix (where we have used the capital K and K > 0 means focusing in the plane 
considered) 

1 0 1 0
( )

1 1 ( ) d 1
s

f K s sδ
   

= =   − − ⋅   
δQ  

with the unperturbed matrix for one circle 

staring at s (where α(s)=α0, β(s)=β0, γ(s)=γ0) 

0 0 0 0 0
0

0 0 0 0 0

cos sin sin
sin cos sin

µ α µ β µ
γ µ µ α µ

+ 
=  − − 

M  

giving: 

( )
0 0 0

0 0 0 0 00 0

0

0

0 0 0

0

0

cos sin
d si

( ) ( )

d co n cos sins si
s

n
in

sin Ks s

s s

Kδ µ α

µ α µ

δ β

β µ

γ µ µµ µ α µ

= ⋅

=
+

−− + − + −
 
 
 

M δQ M

 

Take care: 
δKx = −δk 
δKy = +δk 
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From { }0 0 0 0
1 Tr cos cos( ) cos sin
2

µ µ µ µ µ µ= = + ∆ ≈ − ∆ ⋅M  we get: 

{ }0 0 0 0
1 1Tr cos sin d
2 2

12 ( ) ( )d
2

K s

Q s K s s

µ µ β δ

π µ β δ

= −

→ ∆ = ∆ =

M
 

Integrating over the length of the quadrupole perturbation, one obtains 

1 ( ) ( )d
4

Q s K s sβ δ
π

∆ = ∫  

Effect on beta function: 
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A gradient error will not influence the closed orbit but the betatron function of the lat-

tice. In order to calculate the betatron amplitude modulation, we have to determine 

the single turn transport matrix starting at a given observer position s, introducing a 

small gradient perturbation at position s0: 

11 12 11 12
0 0 0

021 22 21 22

1 0
( , ) ( ) ( , )

d 1s

b b a a
s s s s s

K sb b a aδ
    

= ⋅ ⋅ = ⋅ ⋅    −    
M M δQ M  

It is only necessary to evaluate the element 12r  which is 

( )12 11 12 12 12 22 12 0 12 12d dr b a b K s a a r K s a bδ δ= + − ⋅ + = − ⋅  

where 12r  from the unperturbed matrix found by putting 0d 0K sδ = . Thus the varia-

tion in the 12r  term due to the perturbation is 

( ) ( ) ( )
( ) ( )

0 0 0 0 0

0 0 0 0 0

( )sin 2 d ( ) ( ) sin ( ) ( ) sin ( ) ( )

d ( ) ( ) sin ( ) ( ) sin 2 ( ) ( )

s Q K s s s s s s s

K s s s s s Q s s

β π δ β β µ µ µ µ

δ β β µ µ π µ µ

 ∆ = − ⋅ − ⋅ − 
 = − ⋅ − ⋅ − − 
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Using ( ) ( )1sin sin cos cos
2

α β α β α β⋅ = − − +    the left-hand and right-hand sides 

can be expanded to give 

( )


( )

( ) ( ){ }0 0 0

0

0

0

0

2

1 ( )

( )si ( ) cos 2

( )

n

2
cos

2

cos 2 (2 ) ( )

Q

K ds s

s Q

s sQ

s Q

s Q

β π

β π

π

δ

π

πβ

β

µ µ

↑

↓

∆ + =

 − − − 

⋅ ∆ ⋅



 

This leaves the final expression for the betatron amplitude modulation (the so called 

beta-beating): 

( ) ( )00 0 0 0
0

( ) ( )
2

( ) ( ) cos 2 ( ) ( ) d
sin 2 s

s K s s s Q ss s
Q

β δ µ µ
π

β πβ  ∆ = ⋅ − − ⋅ ∫  

  



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 98 

Ideal World:
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 Single  Quadrupole Error:  
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4.4.6. Optical resonances 

Impact of field errors in circular accelerators: 

• Dipole errors will cause close orbit displacements which will grow indefinitely 

when the tune approaches an integer value. 

• Gradient errors will produce an average tune shift Q∆ . They will not affect the 

closed orbit but change the beta function. The beam size will grow indefinitely 

when the tune approaches half integer values. 

These phenomena are called optical resonances. Due to the turn by turn modulation 

of the tune, there exist regions of instability called stop bands around the resonance 

conditions. The width of these stop bands are given by the tune modulation ampli-

tude. 

These effects can be studied best when regarding the normalized phase space, where 

the particles’ ellipses transform to circles. Since we are interested in the impact of the 

error, we select the trace space at the position of the faulty element: 
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Dipole Errors: 

 
No average tune shift  

Tune modulation amplitude dQ  

Gradient Errors: 

 
Average tune shift ( )1

4
Q Klβ δ

π
∆ =  

Tune modulation amplitude dQ Q= ∆  
 

Any particle whose unperturbed Q lies 

in the stop band width dQ will lock into 

resonance and is lost.  

  

∆µ=2π∆Q 

∆µ=2π∆Q 

xn 
xn 
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We may generalize and give a list of resonances and their driving multipoles: 

resonance type driving multipole 
integer resonance: Q n=  dipole errors 

half-integer resonance 2 Q n⋅ =  quadrupole errors 
third-integer resonance 3 Q n⋅ =  sextupole errors 

Example: fast ramping synchrotron ↔ only “lower” orders are important (≤ 5) 

 

Due to betatron coupling, perturba-

tions may depend on the betatron am-

plitude in both planes. These coupling 

terms lead to the generalized reso-

nance condition 

x ym Q n Q N⋅ + ⋅ =  

where m+n indicates the order of the 

resonance. The working point chosen 

is indicated by a red filled circle. 



CERN Accelerator School: Introductory Course 
 

Transverse Linear Beam Dynamics W. Hillert page 103 

Example: LHC ↔ long store needs to consider “higher” orders (> 10) as well 

 
Tune stability requirements: ∆Q < 0.001 vs exp. Drifts ~ 0.06 

Note: need to stay much further of resonances due to finite tune width (chromaticity, 

momentum spread), space charge, beam-beam, etc., and finite width of stop bands. 

Courtesy of R. Steinhagen 
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4.5. Beam dynamics with acceleration 

Phase space in accelerator physics  ≠  phase space in classical mechanics: 

coordinates x, x´   ↔  canonical coordinates x, px 

0 0´ ´ ´ ´ .x r r r rp m x m s x p x m c x x constβ γ β γ= ⋅ = ⋅ ⋅ ≈ ⋅ = ⋅ ⋅ → ⋅ =   

Beam acceleration (momentum increase) causes compression of x´ axis and therewith 

decrease of the beam emittance, which is called adiabatic damping: 

 

 

 

 

 

 

 
→ Define normalized emittance, which is conserved: n r rε β γ ε= ⋅    
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5. Dynamics with Off Momentum Particles 

We will come back to the equation of motion, now explicitly treating the momentum 

dependent right hand side, depending on the relative momentum deviation 0p pδ = ∆   

2
1´́ ( ) ( ) ( )
( )

´́ ( ) ( )

1

( ) 0

( )
x s k s x s

s

y s k s y

s

s

δ
ρρ

 
+ − ⋅ = 

 

+ ⋅ =

 

Since the dynamics of off momentum particles is only affected in the horizontal 

plane, we will restrict the treatment to 1D including the momentum dependence. 

5.1 Dispersion and dispersion functions 

A particular solution for a non-vanishing p pδ = ∆  is ( )ihx s ρ δ= ⋅ . Recalling the so-

lution of the homogenous equation, this gives: 

( ) ( )( ) ( ) ( ) cos sinh ih
s sx s x s x s a b ρ δρ ρ= + = ⋅ + ⋅ + ⋅  
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The integration constants a, b are again derived from the boundary conditions at 

0s = , but now the inhomogeneous solution has to be included: 

0 0( 0) , (́ 0) ´bx s a x x s xρ δ
ρ

= = + ⋅ = = = = , 

and by defining the bending angle Lϕ ρ=  of the dipole magnet, we obtain : 

( )0

0

0

0

cos ´ si 1 cos
si

n
sin ´ co

( )
´ n( ) s

x x xL
x xL x

ρ ϕ δϕ ρ ϕ
ϕ ϕ ϕ δρ

⋅ + ⋅ ⋅

⋅ + ⋅− +

+ −= ⋅

⋅=
 

This can be easily implemented in the matrix formalism by adding a 3rd component to 

the particle’s position vector dealing with the actual relative momentum deviation 

compared to the reference particle:  

dipole

cos sin
1 sin co´ M

0 0 1

s
(1 cos )

sin
x

X x
ϕ ρ ϕ

ρ ϕ ϕ
δ

ρ ϕ
ϕ

  
  = =  

      

−
−


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First neglecting the dependence of the quadrupole strength k on the actual particle’s 

momentum, the quadrupole transfer matrices remain “unchanged”: 

QF QDM M

0 0 1 0 0 1

cos sin cosh sinh

1 sin cos 1 sinh cos

0 0
0 0h

k k

k k

   
   
   = =
   
   
   

Ω Ω Ω Ω

− Ω Ω Ω Ω  

Important: 

Whereas a quadrupole magnet will not directly cause an impact on the particle’s tra-

jectory, a dipole magnet creates a (horizontal) dispersion: 

( )dip 13 dip 231 cos , sinD r D rρ ϕ ϕ′= = − = =  

The dispersion represents the offset due to a relative momentum deviation 1p p∆ = . 

In general, we have:  ( ) ( ) ( )( ) ( )h Dx sx s x ss s Dx δ= + = + ⋅  

Here, D(s) is the dispersion function, a solution of the equation of motion for δ = 1. 

The dispersion D indicates how much reference trajectory is displaced for δ = 1. 

→ Hands-on Lattice Calculation  
recommended E33 
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A dipole magnet will create dispersion → dispersion orbit xD: 

 
 

A quadrupole magnet will not create any dispersion: 
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But now take care: 

Due to  ( ) ( ) ( )Dhx s x s x s= + ,  we will observe a change of the dispersion orbit ( )Dx s   

when passing a dipole magnet or a quadrupole magnet!! 

Both dipole and quadrupole magnets will modify an existing dispersion according to 

11 12 11 12

2

0 0

0 0

dip

dip1 22 21 22

dipole quadrupole

( ) ( )
(́ ) ´ (́ ) ´
1 1 1 10 0 1 1

0
0

0 0

rD s D D s D
D s D D s D

D r
D

r r
r r r r

          
          = ⋅ = ⋅          

                  

′


M M

 
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5.2 Dispersion in circular accelerators 

In a periodic lattice, the dispersion function has – as well as the beta function – to ful-
fill periodic boundary conditions: 

0 0( ) ( )D s L D s+ =  

Thus the dispersion function can obtained from applying the 3x3 transport matrix M3 
for a full period 

0 0 11 12 13 0

0 3 0 21 22 23 0´ ´ ´
1 1 0 0 1 1

D D r r r D
D D r r r D

       
       = ⋅ = ⋅       
       
       

M  

yielding:     ( ) ( )
( )

13 22 12 23 13 22 12 23
0

11 22

1 1
2 2 1 cos

r r r r r r r r
D

r r µ
− + − +

= =
− − −

 

( ) ( )
( )

13 11 21 13 13 11 21 13
0

11 22

1 1
2 2 1 cos

r r r r r r r r
D

r r µ
− + − +

′ = =
− − −

 

which for a symmetry point, where 0´ 0D = , simplifies to 

sym 13
0

111
rD

r
=

−
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Applying this to our model toy synchrotron, we can derive the dispersion function 
which is plotted in blue: 

 

βy 

→ Hands-on Lattice Calculation  
recommended E34-38 

Please note that the 

total beam width is 

given by 

( )2
x x x xDσ ε β δ= +  ! 
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5.3. Chromaticity 

The variation of tunes is called chromaticity and is defined by the factor ξ  in 

,
0

,x yx y
pQ

p
ξ ∆

∆ = ⋅  

We distinguish between natural chromaticity created by the 

chromatic aberration of quadrupole magnets and perturba-

tions derived from non-linear perturbations in the particles 

trajectories (e.g. produced by sextupole magnets). 

Natural Chromaticity: 

The quadrupole strength scales with the particles’ momenta: 

0 2
0 0 0

q q qk k k g g p g
p p p p

= + ∆ = ≈ − ∆ ⋅
+ ∆

 

Where k0 represents the quadrupole strength experienced by a particle with p0. 

This results in a quadrupole error ∆k for off momentum particles: 
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0 0

, horizontal plane
, vertical plane

K
k k p p

K
δ

δ
−

∆ = − ⋅ ∆ =  +
 

Inserting this in the perturbation formula for the tune, we find: 

0

0

0

0

1 ( )1 ( ) ( ) d
4

( ) d
4
1 ( ) ( ) d

4
1 ( ) ( ) d

4

x x x

y y y

x

y

Q s k s s

Q s k s s

s k s s

s k s s

β
π

β
π

δ ξ β
π

δ ξ β
π

∆ = ⋅ → = + ⋅ ⋅

∆ = ⋅ → =

+ ⋅ ⋅

− − ⋅ ⋅⋅ ⋅

∫

∫ ∫

∫   

 



 

 

 





 

Since the horizontal beta function is larger in focusing quadrupole (where k0 < 0) than 

in a defocusing quadrupole, the natural chromaticity is always negative. The same ar-

gument holds for the vertical chromaticity as well being always negative. 

↓ 

The horizontal and vertical natural chromaticities are always negative. 

Stronger focusing leads to larger natural chromaticities. 

Big circ. accelerators will have a larger natural chromaticity than smaller rings. 
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Chromaticity produced by sextupoles: 

A beam of particles moving on a dispersion orbit through a sextupole magnet is “fo-

cused” by the nonlinear field due to horizontal displacement 
0

px D
p
∆

= ⋅ . We can de-

rived a position dependent focusing strength from 

( )2 2
sext 0 0

0

1ˆ ˆ
2x y

q B m x ye m x y e
p

= + −


 

giving a dispersion dependent δKx and δKz to: 

sext,

0

s

0 0

ext,

0
0

y
x

x
y

BqK k
p x

BqK

m m

m m

x D

x Dk
p y

δ δ

δ δ

δ

δ

∂
= − = ⋅ = ⋅ = ⋅

∂

∂
= + = − ⋅ = − ⋅ = − ⋅

∂

⋅

⋅
 

This adds to the natural chromaticity and gives in total: 

[ ], , 0 0
1 ( ) ( ) ( ) ( ) d

4x y x y s k s m s D s sξ β
π

= ± ⋅ + ⋅∫       
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In order to avoid a large tune spread, chromaticity has to be corrected by the use of 

additional sextupole magnets right after focusing and defocusing quadrupoles where 

the horizontal dispersion does not vanish: 

 
This correction will have an influence on the stability of the beam and the maximum 

aperture given by nonlinear effects (so called dynamic aperture): 

Quadrupole 

Sextupole 
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The dynamic aperture can be calculated from a tracking of the particles orbit through 

the accelerator where the nonlinear effect of sextupole magnets has to be treated as 

step by step correction in linear beam matrix optics: 
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The orbit vector is transformed from s0 to s1 by matrix transformation 

1 1 0X X= ⋅M
 

 

A sextupole of length l will produce an angular kick in the horizontal and vertical or-

bit of     ( )2 2
1 1 1

1 1 1

1´
2

´

x ml x y

y ml x y

∆ = ⋅ −

∆ = ⋅
 

which gives an orbit vector right after the sextupole of 

1

1 1
2

1

1 1

´ ´

´ ´

x
x x

X
y

y y

 
 +∆ =
 
 +∆ 



 

By this method a randomly chosen distribution of start vectors 0X


 is tracked through 

the accelerator for many revolutions and the resulting dynamic aperture is derived 

from the phase space representation. 
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