Recap 1st Lecture

Magnetic Rigidity $B\rho$: corresponding beam momentum $p = qB\rho$ defined by the bending magnets

Beam Guidance:dipole strength
$$\kappa = \frac{1}{\rho} = \frac{q}{p} B_0$$
, $[\kappa] = \mathbf{m}^{-1}$ (curvature) $\mathbf{M} = \mathbf{m}^{-1}$ Beam Focusing:quadrupole strength $k = -\frac{q}{p} \frac{\partial B_y}{\partial x}$, $[k] = \mathbf{m}^{-2}$ $\left(\frac{1}{f} = kL\right)$ $\mathbf{M} = \mathbf{M} = \frac{q}{p} \frac{\partial^{n-1} B_y}{\partial x^{n-1}}$,Magnetic Multipoles: $2n$ poles, "normal" and "skew", rotational symmetry $\frac{2\pi}{n}$ $s_n = \frac{q}{p} \frac{\partial^{n-1} B_y}{\partial x^{n-1}}$, $[s_n] = \mathbf{m}^{-n}$ Paraxial Optics:trajectory described by offsets (x, x', y, y') from design orbit, displacements $x, y \ll \rho$ Geometric Optics:Each element *i* is represented by transfer matrix \mathbf{M}_i , trajectory from $\bar{x} = \prod_{i=1}^n \mathbf{M}_i \cdot \bar{x}_0$ Matrices (simple approx.):dipole and drift $\mathbf{M}_p = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$ quadrupole $\mathbf{M}_q = \begin{pmatrix} 1 & 0 \\ \pm 1/f & 1 \end{pmatrix}$