Recap $1^{\text {st }}$ Lecture

Magnetic Rigidity $\boldsymbol{B} \rho$: corresponding beam momentum $p=q B \rho$ defined by the bending magnets

Beam Guidance:
dipole strength $\quad \kappa=\frac{1}{\rho}=\frac{q}{p} B_{0}, \quad[\kappa]=\mathrm{m}^{-1} \quad$ (curvature)

$I(\varphi)=I_{0} \cdot \cos \varphi$

Beam Focusing: quadrupole strength $k=-\frac{q}{p} \frac{\partial B_{y}}{\partial x}, \quad[k]=\mathrm{m}^{-2}\left(\frac{1}{f}=k L\right)$

Magnetic Multipoles: $2 n$ poles, "normal" and "skew", rotational symmetry $\frac{2 \pi}{n} \quad s_{n}=\frac{q}{p} \frac{\partial^{n-1} B_{y}}{\partial x^{n-1}}, \quad\left[s_{n}\right]=\mathrm{m}^{-n}$

Paraxial Optics:
Geometric Optics:
trajectory described by offsets $\left(x, x^{\prime}, y, y^{\prime}\right)$ from design orbit, displacements $x, y \ll \rho$
Each element i is represented by transfer matrix \mathbf{M}_{i}, trajectory from $\vec{x}=\prod_{i=1}^{n} \mathbf{M}_{i} \cdot \vec{x}_{0}$

$$
\text { dipole and drift } \mathbf{M}_{D}=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right) \quad \text { quadrupole } \mathbf{M}_{Q}=\left(\begin{array}{cc}
1 & 0 \\
\pm 1 / f & 1
\end{array}\right)
$$

