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Motivation

 TMDs incorporate the transverse momentum of quarks and gluons inside hadrons:
“3D PDF”

e At small longitudinal momentum fraction x the gluons dominate (PDF), but hardly
anything is known about the gluon TMDs experimentally.

* Heavy quarks are very sensitive to the gluon content of hadrons:
* they are predominantly produced from gluons
* not intrinsically present in hadrons at small momentum fractions.

* Furthermore, some quarkonium states, like the J/, are relatively straightforward to
detect and numerous events can be collected.

— Quarkonium, such as J/y production in SIDIS , can been
considered as a main tool to extract gluon TMDs!



The Gluon TMDs

* Proton can be parameterized in terms of
gluon TMDs, at LO (twist ~ 1/hard scale):
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Models for quarkonium production

* Colour singlet model
01Q) = [ dradzy fu(w) fo) dBssrorx IRO)P
* Nonrelativisitc QCD —
do[Q] = Z/drra dxy fo(a) fo(2s) dGarbopmisx (O°n]) o n = 25F1,

11S 135 81S 8325 1P 13Py 13P 13P, 8Py 83P, 83P; 832P,
/4 1

* Colour evaporation model (improved by )
2mp do
do[Q)] =]:Q/2mQ quqﬁ « J/Y:mg =m;my = mp

* Fragmentation functions
dU[Q] — /dxa dIL'b dz fa(xa) fb(xb) da‘a—i—b—)c%—X Dc—)Q(z)

+ / dzq dzp d2 fo(Ta) fo(Tb) d5a+zHQQ+xM



The shape function

* Binding of quarks described by NRQCD
* However, NRQCD does not incorporate: 0 @
* Soft gluon exchange with other color sources that leads to
final state smearing and TM dependence

» Therefore ones needs to include the TMIDShF: Al™ (2, k2)

* “Extension of the LMDEs in collinear factorization”

e We assume that the TMDShF can be different when other TMDs are involved



Matching procedure

e(t) + p(P) = € (¢) + v*[g) + p(P) = €'(€) + J/$[Py] + X

A 1 1
: :  TMD factorization
| : gr| < pu
! : e Collinear factorization
i | [gr| > Aqep
Low Transverse Momentum : : High Transverse Momentum
1 ) qr
Aqep K gr < pm
* In the overlap region the cross sections should match, 1

which allows for extraction of the TMDShF lar| = ;|P¢L|



Low Transverse Momentum (LTM)

* At LO 2 diagrams
* Solely CO production

T/ [e,2511 L|(Py) e SIDIS variables:
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High Transverse Momentum (HTM)

* Large transverse
momentum generated by
extra outgoing particle

At LO 12 diagrams
* CO & CS production

Parton and outgoing
particle are the same

I/ [e5F1 L](Py)

do a n Q2 T R pa°P¢
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Intermediate Transverse Momentum (ITM)

* The ITM can be obtained from the HTM by expanding the Dirac-delta

at small g7 using continuous test functions -
i
2 = -
2 xmax
@ (- )50 3)

5 (1—m)(1—z)_1—zM¢_q§ s logM¢+
Tz 2 Q@ Q2 e q?

i M2+ 2 A
.’L‘A, 5(1_2)+ 21/,A Q2 ZA
(I—2)y Mj/z2+Q*(1—2)4

* Agrees with SIDIS

5(1 — :%’)]
Tmax — 1

* However, the hard factor contains discontinuities, made explicit by a
decomposition into poles:

aln) par A ~ralnl; Al A 1-2 kAan;k A
H’P[,ql x,’z):H'P[,cI:]t (0)($,,Z)+Z( A,) HP[,ql( )(Z)

do
dz pdydzdqzdey,

EdO'A‘FdO'B‘I‘dO'C‘

10



The effective Dirac-delta expansion

aln] /a1 A ~aln]; P A > 1-2 a[n];(k
YT
k=1

1 -2/

* Hard factors can be Taylor expanded (higher order terms solve the indeterminacy)

% (k A i a[n] (k)( ) If_’%[n],(l)(l) — 2L22H9["] (0)(1 1)
RO () = FARO (1) 4 31— 2ym Pe 25 tM
m =1 Hg[n] (2) M ﬁg[n](o) -
O=(gp) B
1-#)1-2 1-zM; g2 ) M2+ Q? y A
( 2z 2Q @) ~ Fmax | log 2 6(1—2")6(1 - 2)
x’ . M3+Q2 3 ,
+m5(1_z)+Mﬁ,/2+Q2 a5, 5(1—3;)]
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TMDShF tall

clf{al(z,q7) = /dsz/dsz 3*(pr +kr —ar) f{(z,p%) A" (k%)
Clwh AP (e, q2) = / Cpr / dkr 82 (pr + kr — ar) w(pr, kr) hi¥(z,p2) Al (K2) .

1
w(pr, kr) = WB(I)T -qr)? — prq7]

* Knowing the perturbative tail of the gluon TMDs (relate to PDFs), we obtain the LO TMDShF tail:

bp = 2¢77F =~ 1.123
pp = bo/|br|

1 ( o
n 2 2
AlM(z,b2; 2 = Q?) = o ll+ —Cy \1+10g Q2

~ M
n 0. Qz C Y O O

e Particular scale:

QQ
) log ] (On])d(1 — z) + O(a?) + O(brAgep)

* And the trivial TMDShF tail A} ) (z,k2) = 6(k2)(O[n))6(1 — 2) + O(a)

* Order aa? needed ,



Eikonal method: a validation

pg)c

p— q ANNANANNNNN q P
A (I/}— Py,b A J/P Py,b A J/P Py, b
17

Pa’a% Pa; @\ 099999999 <4 Pa, @ 999900999 -
Pg,C Dg,C
doy o 2(;7%-)3014 /112)§J_ _ dm—xgg [2Sg(pa’ P¢) _SQ(P¢7 P¢)]m2 Ty = Dg " Pa
M¢+Q q* Pa
2 2 2 .

* The TMDShF may also be seen as a fragmentation-like function of a c¢¢ pair into

a J/ evaluated at ITM; inclusion of next order contributions might shine a light
on their relation
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Universality

* The gr-divergent terms from the collinear limit are resummed in the Sudakov factor
of the process, for a general scale uy:
2

2,2
ST (6% 1%) = 5SAb%; 1) + Bep(ity) log 2 Beli) = —5.-Ca (1 +log )2)
b

* In agreement with limit of open heavy quark- pair

* TMDShF should only depend on the scale My,; @ may only enter through uy

A (ugr) = AL (ur) X Sep(ur) pp = J/Y + X

~tn 1
A[SI}F(‘%b?‘;p‘?{) = o~

2T 2

Qg 2
Spp(p2) =1+ %CA (3 log % log %
Wb b
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Conclusions
.,

* Revision of the procedure to derive the LO TMDShF perturbative tail for heavy
quarkonium production: poles in the small gt limit provide non-negligible finite terms
in the expansion at small gr; less divergent behavior as compared to the TMD
fragmentation functions of light hadrons (what was found before).

* We expect that the presence of the poles is an intrinsic feature of any inclusive CO
guarkonium production.

* Agreement with eikonal approximation and with the Sudakov factors obtained for open
heavy-quark pair production in electron-proton and proton-proton collisions.

e Our TMDShF tails hold for every CO quarkonium state (unpolarised, L and T polarised)
with the same quantum numbers as the J/y, e.g. Y(nS) and {(25).

* Only their magnitude is different by the LDMEs. This holds up to the precision
considered, corresponding to the aa? and v* orders in the NRQCD double expansion.

* We split up into two terms: a process-independent quantity that we identify as the
universal TMDShF, and an extra process-dependent soft factor.

* The universal TMDShFs are possible to extract at the EIC and LHC by appropriate
choices of scales, which allows to relate different processes.
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